Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2884-2902.doi: 10.19799/j.cnki.2095-4239.2025.0586
Junfeng HAO1(), Jing ZHU1, Guanjun CEN1, Ronghan QIAO1, Xinxin ZHANG1, Qiangfu SUN1, Mengyu TIAN1, Zhou JIN1, Yuanjie ZHAN1, Yong YAN1, Liubin BEN1, Hailong YU1, Yanyan LIU1, Hong ZHOU2, Xuejie HUANG1(
)
Received:
2025-06-24
Online:
2025-07-28
Published:
2025-07-11
Contact:
Xuejie HUANG
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2025 to May 31 2025)[J]. Energy Storage Science and Technology, 2025, 14(7): 2884-2902.
[1] | WANG B, LI K, XU G, et al. Mechanically and chemically co-robust Ni-rich cathodes with ultrahigh capacity and prolonged cycle life[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.202502725. |
[2] | CHEN X Y, SU J, LIU W Z, et al. Direct regeneration of degraded high-nickel layered cathode with a grain-growth inhibitor by epitaxial boundaries[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202503261. |
[3] | WANG S, LIANG K, ZHAO H, et al. Electronic structure formed by Y2O3-doping in lithium position assists improvement of charging-voltage for high-nickel cathodes[J]. Nature Communications, 2025, 16(1): https://doi.org/10.1038/s41467-024-52768-7. |
[4] | LI J X, LIANG G M, ZHENG W, et al. Structure flexibility enabled by surface high-concentration titanium doping for durable lithium-ion battery cathodes[J]. Journal of the American Chemical Society, 2025, 147(22): 18606-18617. DOI: 10.1021/jacs.5c00789. |
[5] | ALI AHMED S, AGNIHOTRI T, RANJAN A, et al. Boosting stability in Ni-rich cathodes: A synergistic approach to surface and bulk modifications for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A, 2025, 13(20): 14846-14857. DOI: 10.1039/D4TA08834D. |
[6] | PARK N Y, LEE H U, YU T Y, et al. High-energy, long-life Ni-rich cathode materials with columnar structures for all-solid-state batteries[J]. Nature Energy, 2025, 10(4): 479-489. DOI: 10.1038/s41560-025-01726-8. |
[7] | HU X X, DANGWAL S, WANG X C, et al. Superior electrochemical performance of zinc-ion batteries with fine-grained and textured zinc anode produced by high-pressure torsion[J]. Materials Science and Engineering: B, 2025, 317: 118252. DOI: 10.1016/j.mseb.2025.118252. |
[8] | SUN H B, YANG Z J, GHOSH R, et al. Thermal processing to modulate surface chemistry and bulk charge distribution in nickel-rich layered lithium positive electrodes[J]. Nature Communications, 2025, 16: 1478. DOI: 10.1038/s41467-025-56075-7. |
[9] | CHEN Y F, ZHU H T, ZHOU M Y, et al. Accurate determination of reaction rate constants for lithium-ion batteries by characteristic time-decomposed overpotential[J]. Journal of Energy Chemistry, 2025, 106: 608-618. DOI: 10.1016/j.jechem.2025.03.012. |
[10] | CUI Z H, LIU C, WANG F, et al. Navigating thermal stability intricacies of high-nickel cathodes for high-energy lithium batteries[J]. Nature Energy, 2025, 10(4): 490-501. DOI: 10.1038/s41560-025-01731-x. |
[11] | DEMUTH T, KURZHALS P, AHMED S, et al. Effect of a two-step temperature-swing synthesis on coarse-grained LiNiO2 secondary particles characterized by scanning transmission electron microscopy[J]. Chemistry of Materials, 2025, 37(11): 3993-4004. DOI: 10. 1021/acs.chemmater.5c00108. |
[12] | LIU Y, XIN Y, HE B J, et al. High-rate rare-earth-based high-entropy co-free high-Ni cathodes for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2025, 13(18): 12957-12967. DOI: 10.1039/D5TA00576K. |
[13] | ZHAO W G, LI M Y, LI Z J, et al. Stabilizing surface lattice On – (0 n 2) for long-term durability of LiCoO2[J]. Angewandte Chemie International Edition, 2025, 64(23): DOI: 10.1002/anie.202503100. |
[14] | SHIN H, NDUKWE A, KIM T, et al. Mitigating diffusion-induced intragranular cracking in single-crystal LiNi0.5Mn1.5O4 via extended solid-solution behavior[J]. Angewandte Chemie International Edition, 2025, 64(16): DOI: 10.1002/anie.2024 22726. |
[15] | DUAN J, CHEN F, YU H J, et al. π-bridge-linked ionic covalent organic framework with fast reaction kinetics for high-rate-capacity lithium-ion batteries[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.2025 05207. |
[16] | QIAO H H, XIE Z W, ZHU X D, et al. Molecular structure regulation elicits steric hindrance of ketone additives with high adsorbability for oriented deposition of Zn anode[J]. Small, 2025, DOI: 10.1002/smll.202502564. |
[17] | CHOI S, CHAE S, KIM T, et al. Strategic surface engineering of lithium metal anodes: Simultaneous native layer elimination and protective layer formation via gas-solid reaction[J]. ACS Nano, 2025, 19(16): 16119-16132. DOI: 10.1021/acsnano.5c03708. |
[18] | BHATTACHARYA D, REESE C W, BOBEL A, et al. Mechanical performance of lithium metal anodes manufactured using two-dimensional and three-dimensional current collectors[J]. Journal of Materials Research, 2025, 40(8): 1201-1212. DOI: 10.1557/s43578-025-01570-2. |
[19] | SIM H T, UNIVERSITY H, OH M K, et al. Surface-modified lithium enabling high-performance all-solid-state lithium metal batteries[J]. ACS Energy Letters, 2025, 10(5): 2277-2284. DOI: 10.1021/acsenergylett.5c00656. |
[20] | ZHANG X X, YU H L, BEN L B, et al. Topology fortified anodes powered high-energy all-solid-state lithium batteries[J]. Advanced Materials, 2025, DOI: 10.1002/adma.2025 06298. |
[21] | HUANG C H, YANG X L, GONG S Q, et al. Hierarchical-structured RGO@EGaIn composites as advanced self-healing anode for room-temperature liquid metal battery[J]. Advanced Materials, 2025, 37(14): 2419060. DOI: 10.1002/adma.2024 19060. |
[22] | SONG Y, CHO S, KIM S, et al. Comprehensive Si anode design for sulfide-based all-solid-state batteries: Insights into Si-electrolyte synergy for mitigating contact loss[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202504739. |
[23] | CAO J Q, SHI Y S, MUHTAR D, et al. Topological Li-SbF3@Cu alloying anode for high-energy-density Li metal batteries[J]. Advanced Materials, 2025, DOI: 10.1002/adma.202501811. |
[24] | JEONG J, KIM D, KIM M, et al. Metal-ion-crosstalk-suppressing gel polymer electrolytes for high-voltage Li-ion batteries[J]. Journal of Power Sources, 2025, 641: 236849. DOI: 10.1016/j.jpowsour.2025.236849. |
[25] | ARMAND M, GRUGEON S, CASTRESANA K G, et al. Poly(vinyl butyrate) esters as stable polymer matrix for solid-state li-metal batteries[J]. Acs Energy Letters, 2025, 10(1): 579-587. |
[26] | SONG Y, QU H T, LAO Z J, et al. Creating vacancy strong interaction to enable homogeneous high-throughput ion transport for efficient solid-state lithium batteries[J]. Advanced Materials, 2025, 37(18): 2419271. DOI: 10.1002/adma.202419271. |
[27] | ZHU Q N, YANG K, CHEN L K, et al. Activating interfacial ion exchange in composite electrolytes to realize high-rate and long-cycling solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2025, 64(23): e202425221. DOI: 10.1002/anie.202425221. |
[28] | LIU S H, TIAN W S, SHEN J Q, et al. Bioinspired gel polymer electrolyte for wide temperature lithium metal battery[J]. Nature Communications, 2025, 16: 2474. DOI: 10.1038/s41467-025-57856-w. |
[29] | GOU J R, CUI K X, WANG S Q, et al. An anisotropic strategy for developing polymer electrolytes endowing lithium metal batteries with electrochemo-mechanically stable interface[J]. Nature Communications, 2025, 16: 3626. DOI: 10.1038/s41467-025-58916-x. |
[30] | CHENG X R, LU C H, GONG X C, et al. Quasi-solid fiber-shaped lithium-ion batteries with fire resistance[J]. Angewandte Chemie International Edition, 2025, 64(16): e202423419. DOI: 10.1002/anie.202423419. |
[31] | DING M F, PENG Y, TONG J J, et al. In situ fabricated non-flammable gel polymer electrolyte with stable interfacial compatibility for safer lithium-ion batteries[J]. Small, 2025, 21(15): 2410961. DOI: 10.1002/smll.202410961. |
[32] | CHEN D J, CHEN W, ZHANG B W, et al. High partial molar volume polymer electrolyte for upgraded lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(25): e202500896. DOI: 10.1002/anie.202500896. |
[33] | HUANG J, QIU B, XU F, et al. Steric hindrance manipulation in polymer electrolytes toward wide-temperature solid-state lithium metal batteries[J]. Acs Energy Letters, 2025, 10(4): 1921-1930. DOI: 10.1021/acsenergylett.4c03602. |
[34] | LIAO Y L, WANG X L, YUAN H, et al. Ultrafast Li-rich transport in composite solid-state electrolytes[J]. Advanced Materials, 2025, 37(10): 2419782. DOI: 10.1002/adma.202419782. |
[35] | QU Y P, SU C, WANG L, et al. Interface engineered electrolyte design strategy for ultralong-cycle solid-state lithium batteries over wide temperature range[J]. Angewandte Chemie International Edition, 2025. DOI: 10.1002/anie.202506731. |
[36] | WANG C Y, LI Z K, MIAO Z K, et al. A soluble precursor facilitates ultra-fast synthesis of O3 layered oxides for sodium-ion batteries[J]. Science China Materials, 2025, 68(6): 1967-1973. DOI: 10.1007/s40843-025-3334-5. |
[37] | WAN L, NIE H Y, YU Q H, et al. Design of ultrafast lithium ion channel for solid-state lithium metal batteries by in situ polymerization induced phase separation[J]. Chemical Engineering Journal, 2025, 513: 162810. DOI: 10.1016/j.cej.2025.162810. |
[38] | HOLMES S E, UNIVERSITY S, KONDEK J, et al. LiI-modified glass-ceramic lithium thioborate: From fundamentals to applications in solid-state batteries[J]. Chemistry of Materials, 2025, 37(7): 2642-2649. DOI: 10.1021/acs.chemmater.5c00224. |
[39] | HONG B L, GAO L, LI C P, et al. All-solid-state batteries designed for operation under extreme cold conditions[J]. Nature Communications, 2025, 16: 143. DOI: 10.1038/s41467-024-55154-5. |
[40] | NIE Y H, LUO D, YANG T Z, et al. Ultrathin electrolyte membranes with reinforced concrete structure for fast-charging solid-state lithium metal batteries[J]. Advanced Materials, 2025. DOI: 10.1002/adma.202504092. |
[41] | KWON G, GWON H, BAE Y, et al. Disorder-driven sintering-free garnet-type solid electrolytes[J]. Nature Communications, 2025, 16: 3256. DOI: 10.1038/s41467-025-58108-7. |
[42] | KIM M, MOON H, KIM S, et al. Tunable solvation structures for fast charging of micron-Si anodes in energy-dense lithium-ion batteries[J]. Chemical Engineering Journal, 2025, 511: 162079. DOI: 10.1016/j.cej.2025.162079. |
[43] | YANG W, LI S W, LIU Y, et al. Selective interfacial polymerization improves reversibility of Si anodes[J]. Chemical Engineering Journal, 2025, 514: 163168. DOI: 10.1016/j.cej.2025.163168. |
[44] | YANG J C, WANG S C, SONG S Y, et al. Cyclable micron-sized silicon-based lithium-ion batteries at -40 ℃ enabled by temperature-dependent solvation regulation[J]. Advanced Materials, 2025: e2501807. DOI: 10.1002/adma.202501807. |
[45] | XIAO Z X, WU S Y, REN X Z, et al. Superior high-rate Ni-rich lithium batteries based on fast ion-desolvation and stable solid-electrolyte interphase[J]. Advanced Science, 2025, 12(12): 2413419. DOI: 10.1002/advs.202413419. |
[46] | CHEN B, CAO T Y, UNIVERSITY F, et al. Rational design of yolk-shell Fe7S8@C-N for high rate and long cycle Li-ion batteries[J]. Nano Letters, 2025: acs.nanolett.5c00404. DOI: 10.1021/acs.nanolett.5c00404. |
[47] | ZHANG A P, BI Z H, YANG E D, et al. Formulating electrophilic electrolyte for in situ stabilization of 4.8 V Li-rich batteries with 100% initial coulombic efficiency[J]. Angewandte Chemie International Edition, 2025, 64(21): e202502603. DOI: 10.1002/anie.202502603. |
[48] | YIN X K, LI B Y, LIU H, et al. Solvent-derived organic-rich SEI enables capacity enhancement for low-temperature lithium metal batteries[J]. Joule, 2025, 9(4): 101823. DOI: 10.1016/j.joule. 2025.101823. |
[49] | JIA H, BROEKHUIS B, XU Y B, et al. Rational electrolyte design for elevated-temperature and thermally stable lithium-ion batteries with nickel-rich cathodes[J]. ACS Applied Materials & Interfaces, 2025, 17(4): 6260-6270. DOI: 10.1021/acsami.4c17629. |
[50] | LEE S, LEE H, CHANG H J, et al. Ester-guided dynamic Li+ solvation enables plating-less, fast-charging Li-ion batteries[J]. ACS Nano, 2025, 19(16): 15789-15802. DOI: 10.1021/acsnano. 5c00027. |
[51] | LI C R, ZHOU N, TANG J X, et al. The interaction of ether-based functionalized ionic liquids in lithium-sulfur batteries: A first-principles study[J]. ChemPhysChem, 2025, 26(12): e202400848. DOI: 10.1002/cphc.202400848. |
[52] | CHO W J, LEE S, KULKARNI U, et al. Significant suppression of exothermic heat flow in silicon anodes via in situ polymerization of phosphonium ionic liquids[J]. Journal of Materials Chemistry A, 2025, 13(7): 5213-5219. DOI: 10.1039/D4TA07578A. |
[53] | LI L Q, et al. 2, 4, 6-tris(4-fluorophenyl)cyclo-boroxine as an electrolytes additive to form ultrathin CEI interfacial membrane for improved high-voltage LiNi0.8Co0.1Mn0.1O2 lithium-ion batteries[J]. ACS Applied Energy Materials, 2025, 8(7): 4200-4210. DOI: 10.1021/acsaem.4c03034. |
[54] | CHEN X L, YU Z L, LI X J, et al. Multifunctional siloxane additive enabling ultrahigh-nickel lithium battery with long cycle life at 30 and 60 ℃[J]. Small, 2025, 21(7): 2409586. DOI: 10.1002/smll. 202409586. |
[55] | YAO Z Q, FU T J, PAN T, et al. Dynamic doping and interphase stabilization for cobalt-free and high-voltage Lithium metal batteries[J]. Nature Communications, 2025, 16: 2791. DOI: 10.1038/s41467-025-58110-z. |
[56] | ZHANG W L, LU Y, FENG Q Q, et al. Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures[J]. Nature Communications, 2025, 16(1): 3344. DOI: 10.1038/s41467-025-58627-3. |
[57] | XU Q S, LI T, JU Z J, et al. Li2ZrF6-based electrolytes for durable lithium metal batteries[J]. Nature, 2025, 637(8045): 339-346. DOI: 10.1038/s41586-024-08294-z. |
[58] | MIN J, BAK S M, ZHANG Y X, et al. Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries[J]. Nature Nanotechnology, 2025, 20(6): 787-797. DOI: 10.1038/s41565-025-01885-5. |
[59] | KIM D, NOH S, HA Y, et al. Efficient fabrication of high-capacity silicon composite anodes for all-solid-state lithium-ion batteries[J]. Acs Materials Letters, 2025, 7(4): 1211-1218. DOI: 10.1021/acsmaterialslett.5c00068. |
[60] | WANG C C, LIU Y, JEONG W J, et al. The influence of pressure on lithium dealloying in solid-state and liquid electrolyte batteries[J]. Nature Materials, 2025, 24(6): 907-916. DOI: 10.1038/s41563-025-02198-7. |
[61] | QIN X, ZHAO L, HAN J W, et al. Self-pressure silicon-carbon anodes for low-external-pressure solid-state Li-ion batteries[J]. ACS Nano, 2025, 19(18): 17760-17773. DOI: 10.1021/acsnano. 5c03017. |
[62] | LIU J H, WANG L N, CHENG Y, et al. Modulating the spatio-temporal sequence of lithium plating and stripping via a 3D host for solid state batteries[J]. Advanced Materials, 2025, 37(20): 2418720. DOI: 10.1002/adma.202418720. |
[63] | REN S Y, SU Y, JIANG W N, et al. Influence of free space on lithium growth behavior at open surfaces and internal cracks of sulfide-based solid electrolyte[J]. Advanced Materials, 2025, 37(10): 2414239. DOI: 10.1002/adma.202414239. |
[64] | RAFIQUE A, FALLARINO L, ACCARDO G, et al. Interfacial analysis of in situ anode formation in solid-state batteries with nanometric current collector[J]. Chemical Engineering Journal, 2025, 509: 160956. DOI: 10.1016/j.cej.2025.160956. |
[65] | WANG H, DENG N P, WANG Y L, et al. Research progress and challenges of high-performance solid-state lithium sulfur batteries: Cathodes, electrolytes, and anodes[J]. Small, 2025, 21(15): e2411452. DOI: 10.1002/smll.202411452. |
[66] | JIAO X, TAN L, TANG X X, et al. A 405 Wh·kg-1 Ah-level lithium-sulfur pouch battery stabilized over 200 cycles by an electron-triode-like GeS2-NiS2 heterostructure[J]. Energy & Environmental Science, 2025, 18(9): 4053-4067. DOI: 10.1039/D5EE00615E. |
[67] | GUO P B, LI X Y, TANG T, et al. Modularized cathode with neural network topology for high rate and fault-tolerant lithium-sulfur batteries[J]. Advanced Materials, 2025. DOI: 10.1002/adma.2025 04908. |
[68] | LIN J X, DAI P, HU S N, et al. Sulfur defect engineering controls Li2S crystal orientation towards dendrite-free lithium metal batteries[J]. Nature Communications, 2025, 16: 3130. DOI: 10.1038/s41467-025-57572-5. |
[69] | AOYAGI S, IWAMA E, MATSUMURA K, et al. Ultra-densified TiO2(B) anode with fluid-like compressibility: Enhancing volumetric capacity for high-performance supercapacitors[J]. Small, 2025, 21(19): 2410793. DOI: 10.1002/smll.202410793. |
[70] | CAO Y, GENG C N, BAI C, et al. Integrating solid interfaces for catalysis in all-solid-state lithium-sulfur batteries[J]. Energy & Environmental Science, 2025, 18(8): 3795-3806. DOI: 10.1039/D4EE05845C. |
[71] | PEI L, WU Y H, SHEN X L, et al. Energy state estimation for series-connected battery packs based on online curve construction of pack comprehensive OCV[J]. Energies, 2025, 18(7): 1772. DOI: 10.3390/en18071772. |
[72] | YU Z, SINGH B, YU Y, et al. Suppressing argyrodite oxidation by tuning the host structure for high-areal-capacity all-solid-state lithium-sulfur batteries[J]. Nature Materials, 2025: 1-9. DOI: 10.1038/s41563-025-02238-2. |
[73] | LEI X F, HE M L, WU P L, et al. Fabrication of a mechanically robust solid-electrolyte interphase on sodium-metal anodes by anion modulation for ambient sodium-air batteries[J]. Small Methods, 2025. DOI: 10.1002/smtd.2024 01930. |
[74] | SONG H M, MÜNCH K, LIU X, et al. All-solid-state Li-S batteries with fast solid-solid sulfur reaction[J]. Nature, 2025, 637(8047): 846-853. DOI: 10.1038/s41586-024-08298-9. |
[75] | WEN Z, LIU Y W, LI K W, et al. Boosting the Li-O2 pouch cell beyond 860 Wh·kg-1 with an O2-enriched localized high-concentration electrolyte[J]. National Science Review, 2025, 12(7): nwaf059. DOI: 10.1093/nsr/nwaf059. |
[76] | ZHOU Y, YIN K, HUANG Y Y, et al. D-orbital reconstruction achieves low charge overpotential in Li-oxygen batteries[J]. Nature Communications, 2025, 16: 3353. DOI: 10.1038/s41467-025-58640-6. |
[77] | LI D C, LEI M, CHEN K Y, et al. Enable rechargeable carbon fluoride batteries with ultra-high rate and ultra-long life by electrolyte solvation structure and interface design[J]. Nano Energy, 2025, 141: 111074. DOI: 10.1016/j.nanoen.2025.111074. |
[78] | TANG P, GUAN S Q, WU C, et al. Deciphering the crystallographic effect in radially architectured polycrystalline layered cathode materials for lithium-ion batteries[J]. Angewandte Chemie, 2025, 137(26): e202503108. DOI: 10.1002/ange.2025 03108. |
[79] | KIM S H, CHO S H, CHOI Y G, et al. Li-ion diffusivity mismatch in commercial level high-Ni single-crystalline NCM cathode and graphite-SiO composite anode: Degradation mechanism and controlled charging protocol[J]. ACS Applied Materials & Interfaces, 2025, 17(15): 22706-22714. DOI: 10.1021/acsami. 5c01205. |
[80] | NA S, OH R, SONG J, et al. Formation cycle control for enhanced structural stability of Ni-rich LiNixCoyMn1- x- yO2 cathodes[J]. ACS Nano, 2025, 19(2): 2136-2147. DOI: 10.1021/acsnano.4c10476. |
[81] | AL-JALJOULI F, MÜCKE R, ROITZHEIM C, et al. Chemo-thermal stress in all-solid-state batteries: Impact of cathode active materials and microstructure[J]. Journal of Power Sources, 2025, 644: 237136. DOI: 10.1016/j.jpowsour.2025.237136. |
[82] | AOKI Y, MIYOSHI R, KATO K, et al. Correlating electrochemical behavior with morphological and compositional changes in sulfide solid electrolyte all-solid-state batteries after charge/discharge cycles[J]. Acs Applied Energy Materials, 2025, 8(8): 5269-5276. |
[83] | OHASHI T, KOBAYASHI H. Measuring method of electrochemically active surface area in all-solid-state lithium-ion batteries[J]. Batteries & Supercaps, 2025. DOI: 10.1002/batt.202500092. |
[84] | WATANABE K, KIM H S, HIKIMA K, et al. Self-closing of cracks generated in microstructure-controlled 400 μm-thick composite cathodes for all-solid-state batteries: Observed by in situ scanning electron microscopy with energy-dispersive X-ray spectroscopy[J]. Batteries & Supercaps, 2025, 8(6): e202500119. DOI: 10.1002/batt.202500119. |
[85] | CASPAR M, BIECHER Y, TISON Y, et al. Study of the cathode/electrolyte interface in an all-sulfide-solid-state battery using lithium-rich transition metal sulfide[J]. ACS Applied Materials & Interfaces, 2025, 17(4): 7142-7150. DOI: 10.1021/acsami.4c18890. |
[86] | VON MENTLEN J M, GÜNGÖR A S, DEMUTH T, et al. Unraveling multiphase conversion pathways in lithium-sulfur batteries through cryo transmission electron microscopy and machine learning-assisted operando neutron scattering[J]. ACS Nano, 2025, 19(17): 16626-16638. DOI: 10.1021/acsnano.5c00536. |
[87] | MARTIN MAHER S, FLORAS C, BAUER M, et al. Changes to the electrolyte in NMC640/graphite li-ion pouch cells tested for one year at 85 ℃[J]. Journal of the Electrochemical Society, 2025, 172(5): DOI: 10.1149/1945-7111/add41a. |
[88] | LIU C, DOLOCAN A, CUI Z H, et al. Multi-dimensional, multi-scale analysis of interphase chemistry for enhanced fast-charging of lithium-ion batteries with ion mass spectrometry[J]. Journal of the American Chemical Society, 2025, 147(7): 6023-6036. DOI: 10.1021/jacs.4c16561. |
[89] | WANG Z Y, HU X C, ZHANG Y, et al. Ptychographic observation of lithium atoms in the irradiation-sensitive garnet-type solid electrolyte at sub-angstrom resolution[J]. Journal of the American Chemical Society, 2025, 147(21): 18025-18032. DOI: 10.1021/jacs.5c03627. |
[90] | OTOYAMA M, TERASAKI N, TAKEUCHI T, et al. Visualization of local strain distributions in all-solid-state batteries with silicon negative electrodes using digital image correlation for operando/In situ microscopy images[J]. ChemElectroChem, 2025, 12(8): e202400616. DOI: 10.1002/celc.202400616. |
[91] | LEAU C, WANG Y, GERVILLIÉ-MOURAVIEFF C, et al. Tracking solid electrolyte interphase dynamics using operando fibre-optic infra-red spectroscopy and multivariate curve regression[J]. Nature Communications, 2025, 16: 757. DOI: 10.1038/s41467-024-55339-y. |
[92] | TURRELL S J, LIANG Y, CAI T C, et al. Origin of stability in the solid electrolyte interphase formed between lithium and lithium phosphorus oxynitride[J]. Chemistry of Materials, 2025, 37(9): 3504-3518. DOI: 10.1021/acs.chemmater.5c00483. |
[93] | LIMON M S R, DUFFEE C W, AHMAD Z. Constriction and contact impedance of ceramic solid electrolytes[J]. Acs Energy Letters, 2025, 10(4): 1999-2006. |
[94] | XIONG R, HE Y H, SUN Y, et al. Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks[J]. Journal of Energy Chemistry, 2025, 104: 618-627. DOI: 10.1016/j.jechem.2025.01.019. |
[95] | QIU S Y, BAI J, WANG P Y, et al. operando magnetism on oxygen redox process in Li-rich cathodes[J]. Advanced Materials, 2025, 37(18): 2420453. DOI: 10.1002/adma.202420453. |
[96] | FAN J B, LIU C C, LI N, et al. Wireless transmission of internal hazard signals in Li-ion batteries[J]. Nature, 2025, 641(8063): 639-645. DOI: 10.1038/s41586-025-08785-7. |
[97] | LIAO Y X, YANG C, SUN L H, et al. Advances in aqueous dual-ion batteries: Anion storage mechanisms, challenges and electrolyte design[J]. Energy Storage Materials, 2025, 77: 104225. DOI: 10.1016/j.ensm.2025.104225. |
[98] | LAO Z J, TAO K H, XIAO X, et al. Data-driven exploration of weak coordination microenvironment in solid-state electrolyte for safe and energy-dense batteries[J]. Nature Communications, 2025, 16: 1075. DOI: 10.1038/s41467-024-55633-9. |
[99] | YOU Y W, ZHANG D X, WU Z F, et al. Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries[J]. Nature Communications, 2025, 16: 4630. DOI: 10.1038/s41467-025-59895-9. |
[100] | HAO W, LI Y J, HWANG G S, et al. Origin of lithium dendrite formation in sulfide-based electrolyte[J]. Angewandte Chemie, 2025, 137(25): e202500245. DOI: 10.1002/ange.202500245. |
[1] | Jingfei CHENG. Internal fault analysis strategy of lithium battery based on isolation forest algorithm [J]. Energy Storage Science and Technology, 2025, 14(7): 2878-2880. |
[2] | Wenjie ZHANG, Dongsheng REN, Yu WU, Xinyu RUI, Xiang LIU, Xuning FENG, Languang LU. Thermal stability of key materials in Li10GeP12S2-based all-solid-state batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2193-2199. |
[3] | Zhangjie XU, Zhengyue SUN, Xinyan ZHANG, Jiliang ZHANG, Yingchao YU, Chuang DONG. FeOOH coating on FeS as high-performance anode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2232-2239. |
[4] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
[5] | Deshuai LIU, Huiqin ZHU, Ruihao SUN, Meng LI, Wenhao GONG, Xiaohui LI, Weiwei QIAN. Synergistic dual-additive boost cyclability of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. |
[6] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[7] | Xiaoru XU, Jianzhen OU, Jiawei LIU, Zhicong CHEN, Hao YE, Yinglong LIU, Yingli LIU, Zeyu LIN, Jingjing LIU, Junhui JIAN, Xu LUO, Jingmin FAN, Chao WANG, Libin LEI, Bo LIANG. Direct ammonia tubular fuel cell with an embedded microchannel ceramic cracking reactor [J]. Energy Storage Science and Technology, 2025, 14(5): 1818-1828. |
[8] | Ruilin HE, Tong ZHANG, Jiachun WU, Chaoyang WANG, Yonghong DENG, Guangzhao ZHANG, Xiaoxiong XU. Design of scaffold materials and their application in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1758-1775. |
[9] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747. |
[10] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
[11] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[12] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. |
[13] | Dequan HUANG, Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG. Research on the application of siloxane solvent in high-voltage lithium metal batteries and electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(4): 1340-1351. |
[14] | Tao YE, Yijun WANG, Zilong TANG, Guoliang PAN. Investigation of capacity fading in vanadium flow battery electrolytes and recovery via oxalic acid [J]. Energy Storage Science and Technology, 2025, 14(3): 1177-1186. |
[15] | Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies [J]. Energy Storage Science and Technology, 2025, 14(3): 965-983. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||