Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (5): 1114-1127.doi: 10.12028/j.issn.2095-4239.2017.0141
Previous Articles Next Articles
CHEN Yuyang, QI Wenbin, JIN Zhou, ZHANG Hua, ZHAN Yuanjie, WU Yida, ZHAO Junnian, CHEN Bin,YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2017-08-15
Online:
2017-09-01
Published:
2017-09-01
CHEN Yuyang, QI Wenbin, JIN Zhou, ZHANG Hua, ZHAN Yuanjie, WU Yida, ZHAO Junnian, CHEN Bin,YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Jun. 1,2017 to Jul. 31,2017)[J]. Energy Storage Science and Technology, 2017, 6(5): 1114-1127.
[1] MOHANTY D, MAZUMDER B, DEVARAJ A, et al. Resolving the degradation pathways in high-voltage oxides for high-energy- density lithium-ion batteries; Alternation in chemistry, composition and crystal structures[J]. Nano Energy, 2017, 36: 76-84. [2] MALLICK M M, VITTA S. Giant enhancement in high-temperature thermoelectric figure-of-merit of layered cobalt oxide, LiCoO2, due to a dual strategy-Co-substitution and lithiation[J]. Inorganic Chemistry, 2017, 56(10): 5827-5838. [3] YOON C S, JUN D W, MYUNG S T, et al. Structural stability of LiNiO2 cycled above 4.2 V[J]. Acs Energy Letters, 2017, 2(5): 1150-1155. [4] JUNG R, METZGER M, MAGLIA F, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2(NMC) cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1361-A1377. [5] DENG S X, XIAO B W, WANG B Q, et al. New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes[J]. Nano Energy, 2017, 38: 19-27. [6] MATTELAER F, VEREECKEN P M, DENDOOVEN J, et al. The influence of ultrathin amorphous ALD alumina and titania on the rate capability of anatase TiO2 and LiMn2O4 lithium ion battery electrodes[J]. Advanced Materials Interfaces, 2017, 4(13): doi: 10.1002/admi.201601237. [7] JIN Y C, DUH J G. Kinetic study of high voltage spinel cathode material in a wide temperature range for lithium ion battery[J]. Journal of the Electrochemical Society, 2017, 164(4): A735-A740. [8] SATOU Y, KOMINE S, ITOU S, et al. Differences between the kinetically preferred states of LiFePO4 during charging and discharging observed using in situ X-ray diffraction measurements[J]. Journal of the Electrochemical Society, 2017, 164(6): A1281-A1284. [9] BRUTTI S, MANZI J, MEGGIOLARO D, et al. Interplay between local structure and transport properties in iron-doped LiCoPO4 olivines[J]. Journal of Materials Chemistry A, 2017, 5(27): 14020-14030. [10] IKUHARA Y H, GAO X, FISHER C A J, et al. Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO4[J]. Journal of Materials Chemistry A, 2017, 5(19): 9329-9338. [11] LIU H, CHOE M J, ENRIQUE R A, et al. Effects of antisite defects on Li diffusion in LiFePO4 revealed, by Li isotope exchange[J]. Journal of Physical Chemistry C, 2017, 121(22): 12025-12036. [12] ASAKURA D, HOSONO E, OKUBO M, et al. Correlation between the O2p orbital and redox reaction in LiMn0.6Fe0.4PO4 nanowires studied by soft X-ray absorption[J]. Chemphyschem, 2016, 17(24): 4110-4115. [13] CHERKASHININ G, SHARATH S U, JAEGERMANN W. Toward enhanced electronic and ionic conductivity in olivine LiCoPO4 thin film electrode material for 5 V lithium batteries: Effect of LiCo2P3O10 impurity phase[J]. Advanced Energy Materials, 2017, 7(13): doi: 10.1002/aenm.201602321. [14] SACCI R L, LEHMANN M L, DIALLO S O, et al. Lithium transport in an amorphous LixSi anode investigated by quasi-elastic neutron scattering[J]. Journal of Physical Chemistry C, 2017, 121(21): 11083-11088. [15] DOMI Y, USUI H, IWANARI D, et al. Effect of mechanical pre-lithiation on electrochemical performance of silicon negative electrode for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1651-A1654. [16] LIU Z J, BAI S, LIU B L, et al. Interfacial modification of a lightweight carbon foam current collector for high-energy density Si/LCO lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(25): 13168-13175. [17] SURESH S, WU Z P, BARTOLUCCI S F, et al. Protecting silicon film anodes in lithium-ion batteries using an atomically thin graphene drape[J]. Acs Nano, 2017, 11(5): 5051-5061. [18] CHEN S Q, SHEN L F, VAN AKEN P A, et al. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Advanced Materials, 2017, 29(21): doi: 10.1002/adma.201605650. [19] EMETS V V, KULOVA T L, SKUNDIN A M. Dynamic behavior of silicon-based electrodes at open circuit conditions[J]. International Journal of Electrochemical Science, 2017, 12(4): 2754-2762. [20] JIN Y, TAN Y L, HU X Z, et al. Scalable production of the silicon-tin yin-yang hybrid structure with graphene coating for high performance lithium-ion battery anodes[J]. Acs Applied Materials & Interfaces, 2017, 9(18): 15388-15393. [21] LI X L, YAN P F, XIAO X C, et al. Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling[J]. Energy & Environmental Science, 2017, 10(6): 1427-1434. [22] JERLIU B, HUGER E, HORISBERGER M, et al. Irreversible lithium storage during lithiation of amorphous silicon thin film electrodes studied by in-situ neutron reflectometry[J]. Journal of Power Sources, 2017, 359: 415-421. [23] MA T Y, YU X N, LI H Y, et al. High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries[J]. Nano Letters, 2017, 17(6): 3959-3964. [24] XU Y L, SWAANS E, CHEN S B, et al. A high-performance Li-ion anode from direct deposition of Si nanoparticles[J]. Nano Energy, 2017, 38: 477-485. [25] CHEN C H, CHASON E, GUDURU P R. Measurements of the phase and stress evolution during initial lithiation of Sn electrodes[J]. Journal of the Electrochemical Society, 2017, 164(4): A574-A579. [26] SHI Q, HENG S, QU Q T, et al. Constructing an elastic solid electrolyte interphase on graphite: A novel strategy suppressing lithium inventory loss in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(22): 10885-10894. [27] JUNG J, HAH H J, LEE T J, et al. Effect of pre-cycling rate on the passivating ability of surface films on Li4Ti5O12 electrodes[J]. Journal of Electrochemical Science and Technology, 2017, 8(1): 15-24. [28] CHI S S, LIU Y C, SONG W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): doi: 10.1002/ adfm.201700348. [29] RAJI A R O, SALVATIERRA R V, KIM N D, et al. Lithium batteries with nearly maximum metal storage[J]. Acs Nano, 2017, 11(6): 6362-6369. [30] DRUE M, SEYRING M, RETTENMAYR M. Phase formation and microstructure in lithium-carbon intercalation compounds during lithium uptake and release[J]. Journal of Power Sources, 2017, 353: 58-66. [31] CHEN K H, WOOD K N, KAZYAK E, et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. Journal of Materials Chemistry A, 2017, 5(23): 11671-11681. [32] CHEN L, CONNELL J G, NIE A M, et al. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes[J]. Journal of Materials Chemistry A, 2017, 5(24): 12297-12309. [33] ODZIOMEK M, CHAPUT F, RUTKOWSKA A, et al. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries[J]. Nature Communications, 2017, 8: 1-7. [34] ISHIKAWA K, ITO Y, HARADA S, et al. Crystal orientation dependence of precipitate structure of electrodeposited Li metal on Cu current collectors[J]. Crystal Growth & Design, 2017, 17(5): 2379-2385. [35] CHOI Y E, PARK K H, KIM D H, et al. Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries[J]. Chemsuschem, 2017, 10(12): 2605-2611. [36] AUVERGNIOT J, CASSEL A, LEDEUIL J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890. [37] SUZUKI S, KAWAJI J, YOSHIDA K, et al. Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte[J]. Journal of Power Sources, 2017, 359: 97-103. [38] ZHANG W B, WEBER D A, WEIGAND H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(21): 17835-17845. [39] LEE S D, JUNG K N, KIM H, et al. Composite electrolyte for all-solid-state lithium batteries: Low-temperature fabrication and conductivity enhancement[J]. Chemsuschem, 2017, 10(10): 2175-2181. [40] FU K, GONG Y H, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575. [41] DING M S, KOCH S L, PASSERINI S. The effect of 1-pentylamine as solid electrolyte interphase precursor on lithium metal anodes[J]. Electrochimica Acta, 2017, 240: 408-414. [42] LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2(5): doi: 10.1038/nenergy.2017.35. [43] BASAPPA R H, ITO T, YAMADA H. Contact between garnet-type solid electrolyte and lithium metal anode: Influence on charge transfer resistance and short circuit prevention[J]. Journal of the Electrochemical Society, 2017, 164(4): A666-A671. [44] GUO Z Y, LI C, LIU J Y, et al. A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator[J]. Angewandte Chemie-International Edition, 2017, 56(26): 7505-7509. [45] HAKARI T, DEGUCHI M, MITSUHARA K, et al. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion-insertion processes[J]. Chemistry of Materials, 2017, 29(11): 4768-4774. [46] DENG B W, WANG H, GE W J, et al. Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive[J]. Electrochimica Acta, 2017, 236: 61-71. [47] PEEBLES C, SAHORE R, GILBERT J A, et al. Tris(trimethylsilyl) phosphite(TMSPi) and triethyl phosphite(TEPi) as electrolyte additives for lithium ion batteries: Mechanistic insights into differences during LiNi0.5Mn0.3Co0.2O2-Graphite full cell cycling[J]. Journal of the Electrochemical Society, 2017, 164(7): A1579-A1586. [48]. DEMEAUX J, DONG Y N, LUCHT B L. Reversible graphite anode cycling with PC-based electrolytes enabled by added sulfur trioxide complexes[J]. Journal of the Electrochemical Society, 2017, 164(7): A1352-A1360. [49] SHARMA G, JIN Y, LIN Y S. Lithium ion batteries with alumina separator for improved safety[J]. Journal of the Electrochemical Society, 2017, 164(6): A1184-A1191. [50] SHOBUKAWA H, ALVARADO J, YANG Y Y C, et al. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell[J]. Journal of Power Sources, 2017, 359: 173-181. [51] DONG Y N, YOUNG B T, ZHANG Y Z, et al. Effect of lithium borate additives on cathode film formation in LiNi0.5Mn1.5O4/Li cells[J]. Acs Applied Materials & Interfaces, 2017, 9(24): 20467-20475. [52] RUSTOMJI C S, YANG Y, KIM T K, et al. Liquefied gas electrolytes for electrochemical energy storage devices[J]. Science, 2017, 356(6345): doi: 10.1126/science.aal4263. [53] YU H L, ZHAO J N, BEN L B, et al. Dendrite-free lithium deposition with self aligned columnar structure in a carbonate-ether mixed electrolyte[J]. Acs Energy Letters, 2017, 2(6): 1296-1302. [54] CHA J, HAN J G, HWANG J, et al. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 97-106. [55] CAPPETTO A, CAO W J, LUO J F, et al. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells[J]. Journal of Power Sources, 2017, 359: 205-214. [56] MAHNE N, SCHAFZAHL B, LEYPOLD C, et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries[J]. Nature Energy, 2017, 2(5): doi: 10.1038/nenergy.2017.36. [57] ZHANG J Q, SUN B, ZHAO Y F, et al. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries[J]. Angewandte Chemie-International Edition, 2017, 56(29): 8505-8509. [58] XU J J, LIU Q C, YU Y, et al. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries[J]. Advanced Materials, 2017, 29(24): doi: 10.1002/adma.201606552. [59] GITTLESON F S, JONES R E, WARD D K, et al. Oxygen solubility and transport in Li-air battery electrolytes: Establishing criteria and strategies for electrolyte design[J]. Energy & Environmental Science, 2017, 10(5): 1167-1179. [60] LACEY M J, OUML S V, BERGFELT A, et al. A robust, water-based, functional binder framework for high-energy lithium-sulfur batteries[J]. Chemsuschem, 2017, 10(13): 2758-2766. [61] GUO J L, DU X Y, ZHANG X L, et al. Facile formation of a solid electrolyte interface as a smart blocking layer for high-stability sulfur cathode[J]. Advanced Materials, 2017, 29(26): doi: 10.1002/adma.201700273. [62] CHEN Y, LU S T, ZHOU J, et al. Synergistically assembled Li2S/FWNTs@reduced graphene oxide nanobundle forest for free-standing high-performance Li2S cathodes[J]. Advanced Functional Materials, 2017, 27(25): doi: 10.1002/adfm.201700987 . [63] XU Z L, HUANG J Q, CHONG W G, et al. In situ TEM study of volume expansion in porous carbon nanofiber/sulfur cathodes with exceptional high-rate performance[J]. Advanced Energy Materials, 2017, 7(9): doi: 10.1002/aenm.201602078. [64] CHUNG S H, MANTHIRAM A. Lithium-sulfur batteries with the lowest self-discharge and the longest shelf life[J]. Acs Energy Letters, 2017, 2(5): 1056-1061. [65] MA L, KIM M S, ARCHER L A. Stable artificial solid electrolyte interphases for lithium batteries[J]. Chemistry of Materials, 2017, 29(10): 4181-4189. [66] CHUNG S H, HAN P, MANTHIRAM A. Quantitative analysis of electrochemical and electrode stability with low self-discharge lithium-sulfur batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(24): 20318-20323. [67] GU S, HUANG X, WANG Q, et al. A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(27): 13971-13975. [68] PENG H J, HUANG J Q, LIU X Y, et al. Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control[J]. Journal of the American Chemical Society, 2017, 139(25): 8458-8466. [69] LUO W, GONG Y H, ZHU Y Z, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22): doi: 10.1002/adma.201606042. [70] GLAZIER S L, PETIBON R, XIA J, et al. Measuring the parasitic heat flow of lithium ion pouch cells containing EC-free electrolytes[J]. Journal of the Electrochemical Society, 2017, 164(4): A567-A573. [71] LI W D, KIM U H, DOLOCAN A, et al. Formation and inhibition of metallic lithium microstructures in lithium batteries driven by chemical crossover[J]. Acs Nano, 2017, 11(6): 5853-5863. [72] ZHONG L, LIU Y, HAN W Q, et al. In situ observation of single-phase lithium intercalation in sub-25-nm nanoparticles[J]. Advanced Materials, 2017, 29(26): doi: 10.1002/adma.201700236. [73] GE H, AOKI T, IKEDA N, et al. Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization[J]. Journal of the Electrochemical Society, 2017, 164(6): A1050-A1060. [74] MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. Acs Energy Letters, 2017, 2(6): 1321-1326. [75] SEKI S. Solvent-free 4 V-class all-solid-state lithium-ion polymer secondary batteries[J]. Chemistryselect, 2017, 2(13): 3848-3853. [76] TAKATA K. In-situ imaging of Li intercalation in graphite particles in an Li-ion battery[J]. Journal of Microscopy, 2017, 266(3): 249-252. [77] GLENNEBERG J, BARDENHAGEN I, LANGER F, et al. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress[J]. Journal of Power Sources, 2017, 359: 157-165. [78] HESS M. Non-linearity of the solid-electrolyte-interphase overpotential[J]. Electrochimica Acta, 2017, 244: 69-76. [79] KIM D H, OH D Y, PARK K H, et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion- battery electrodes for all-solid-state Li-ion batteries[J]. Nano Letters, 2017, 17(5): 3013-3020. [80] BRON P, ROLING B, DEHNEN S. Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes[J]. Journal of Power Sources, 2017, 352: 127-134. [81] FANG S Y, YAN M, HAMERS R J. Cell design and image analysis for in situ Raman mapping of inhomogeneous state-of-charge profiles in lithium-ion batteries[J]. Journal of Power Sources, 2017, 352: 18-25. [82] LENG Y J, GE S H, MARPLE D, et al. Electrochemical cycle-life characterization of high energy lithium-ion cells with thick Li(Ni0.6Mn0.2Co0.2)O2 and graphite electrodes[J]. Journal of the Electrochemical Society, 2017, 164(6): A1037-A1049. [83] BRENNAN M D, BREEDON M, BEST A S, et al. Surface reactions of ethylene carbonate and propylene carbonate on the Li(001) surface[J]. Electrochimica Acta, 2017, 243: 320-330. [84] HEENEN H H, SCHEURER C, REUTER K. Implications of occupational disorder on ion mobility in Li4Ti5O12 battery materials[J]. Nano Letters, 2017, 17(6): 3884-3888. [85] YUN K S, PAI S J, YEO B C, et al. Simulation protocol for prediction of a solid-electrolyte interphase on the silicon-based anodes of a lithium-ion battery: reaxff reactive force field[J]. Journal of Physical Chemistry Letters, 2017, 8(13): 2812-2818. [86] HU Z L, ZHANG S, DONG S M, et al. Poly(ethyl alpha-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes[J]. Chemistry of Materials, 2017, 29(11): 4682-4689. [87] NANDASIRI M I, CAMACHO-FORERO L E, SCHWARZ A M, et al. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries[J]. Chemistry of Materials, 2017, 29(11): 4728-4737. [88] BENDERSKY L A, TAN H, KARUPPANAN K B, et al. Crystallography and growth of epitaxial oxide films for fundamental studies of cathode materials used in advanced Li-ion batteries[J]. Crystals, 2017, 7(5): doi:10.3390/cryst7050127. [89] THAI K, LEE E. Effects of mechanical strain on ionic conductivity in the interface between LiPON and Ni-Mn spinel[J]. Journal of the Electrochemical Society, 2017, 164(4): A594-A599. [90] WAN C, XU S C, HU M Y, et al. Multinuclear NMR study of the solid electrolyte interface formed in lithium metal batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(17): 14741-14748. [91] KIM D W, SHIIBA H, ZETTSU N, et al. Full picture discovery for mixed-fluorine anion effects on high-voltage spinel lithium nickel manganese oxide cathodes[J]. Npg Asia Materials, 2017(9): doi:10.1038/am.2017.90. [92] XU F, WU L J, MENG Q P, et al. Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods[J]. Nature Communications, 2017(8): doi:10.1038/ ncomms15400. [93] BUCCI G, SWAMY T, BISHOP S, et al. The effect of stress on battery-electrode capacity[J]. Journal of the Electrochemical Society, 2017, 164(4): A645-A654. [94] CHENG T, MERINOV B V, MOROZOV S, et al. Quantum mechanics reactive dynamics study of solid Li-electrode/ Li6PS5Cl-electrolyte interface[J]. Acs Energy Letters, 2017, 2(6): 1454-1459. [95] GANAPATHY S, VASILEIADIS A, HERINGA J R, et al. The fine line between a two-phase and solid-solution phase transformation and highly mobile phase interfaces in spinel Li4+xTi5O12[J]. Advanced Energy Materials, 2017, 7(9): doi: 10.1002/aenm.201601781. [96] CHEONG J Y, KIM C, JUNG J W, et al. Formation of a surficial bifunctional nanolayer on Nb2O5 for ultrastable electrodes for lithium-ion battery[J]. Small, 2017, 13(19): doi: 10.1002/smll.201603610. [97] SICOLO S, FINGERLE M, HAUSBRAND R, et al. Interfacial instability of amorphous LiPON against lithium: A combined density functional theory and spectroscopic study[J]. Journal of Power Sources, 2017, 354: 124-133. [98] WANG X L, XIAO R J, LI H, et al. Oxysulfide LiAlSO: A lithium superionic conductor from first principles[J]. Physical Review Letters, 2017, 118(19): doi:10.1103/PhysRevLett.118.195901. [99] CHANDRASEKARAN S S, MURUGAN P. Structural and electronic properties of solid-state(LiMPO4 vertical bar gamma-Li3PO4)(010) electrochemical interface(M= Fe and Co)[J]. Applied Surface Science, 2017, 418: 17-21. [100] HOU T Z, XU W T, CHEN X, et al. Lithium bond chemistry in lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2017, 56(28): 8178-8182. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||