Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (3): 404-417.doi: 10.12028/j.issn.2095-4239.2018.0007
Previous Articles Next Articles
ZHANG Xiaoyan, REN Yufei, GAO Jie, ZHANG Lan, ZHANG Haitao
Received:
2018-01-18
Revised:
2018-03-15
Online:
2018-05-01
Published:
2018-05-01
CLC Number:
ZHANG Xiaoyan, REN Yufei, GAO Jie, ZHANG Lan, ZHANG Haitao. Progress of electrolyte additives for high-capacity power lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(3): 404-417.
[1] 节能与新能源汽车技术路线图战略咨询委员会, 中国汽车工程学会. 节能与新能源汽车技术路线图[M]. 北京:机械工业出版社, 2016. Energy Conservation and New Energy Vehicle Technology Roadmap Strategic Advisory Committee, Society of Automotive Engineers of China. Technology roadmap for energy saving and new energy vehicles[M]. Beijing:China Machine Press, 2016. [2] 义夫正树, 拉尔夫・J.布拉德, 小泽昭弥, 等. 锂离子电池:科学与技术[M]. 北京:化学工业出版社, 2015. YOSHIO M, BRODD R, KOZAWA A et al. Lithium-ion batteries, science and technologies[M]. Beijing:Chemical Industry Press, 2015. [3] 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4):443-453. WU J, LIU P, HU Y, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4):443-453. [4] 郑洪河. 锂离子电池电解质[M]. 北京:化学工业出版社, 2007. ZHENG H. Electrolyte for lithium-ion battery[M]. Beijing:Chemical Industry Press, 2007. [5] JOW T R, XU K, BORODIN M U. Electrolytes for lithium and lithium-ion batteries[M]. Berlin:Springer, 2014. [6] U K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114(23):11503-11618. [7] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359. [8] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652. [9] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167. [10] LIN F, MARKUS I M, NORDLUND D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature Communications, 2014, 5:3529. [11] ZHANG L, MA Y, DU C, et al. Research on the high-voltage electrolyte for lithium ion batteries[J]. Progress in Chemistry, 2014, 26(4):553-559. [12] HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes:Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6):1955-1988. [13] YAN G, LI X, WANG Z, et al. Tris(trimethylsilyl)phosphate:A film-forming additive for high voltage cathode material in lithium-ion batteries[J]. Journal of Power Sources, 2014, 248(4):1306-1311. [14] KRAYTSBERG A A, EIN-ELI Y. A review of 5 volt cathode materials for advanced lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(8):922-939. [15] MEISTER P, JIA H, LI J, et al. Best practice:Performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency[J]. Chemistry of Materials, 2016, 28(20):7203-7217. [16] MANTHIRAM A, CHEMELEWSKI K, LEE E S. A perspective on the high-voltage LiNi0.5Mn1.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(4):1339-1350. [17] YI T F, MEI J, ZHU Y R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries[J]. Journal of Power Sources, 2016, 316:85-105. [18] MA J, HU P, CUI G, et al. Surface and interface issues in spinel LiNi0.5Mn1.5O4:Insights into a potential cathode material for high energy density lithium ion batteries[J]. Chemistry of Materials, 2016, 47(31):3578-3606. [19] SONG Y M, KIM C K, KIM K E, et al. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes[J]. Journal of Power Sources, 2016, 302:30. [20] LI J, XING L, ZHANG R, et al. Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J]. Journal of Power Sources, 2015, 285:360-366. [21] XU M, TSIOUVARAS N, GARSUCH A, et al. Generation of cathode passivation films via oxidation of lithium bis(oxalato) borate on high voltage spinel (LiNi0.5Mn1.5O4)[J]. J. Phys. Chemc., 2012, 118(14):7363-7368. [22] WANG Z, XING L, LI J, et al. Trimethyl borate as an electrolyte additive for high potential layered cathode with concurrent improvement of rate capability and cyclic stability[J]. Electrochimica Acta, 2015, 184:40-46. [23] ROZIER P, TARASCON J M. Review-Li-rich layered oxide cathodes for nextgeneration Li-ion batteries:Chances and challenges[J]. Journal of the Electrochemistry Society, 2015, 162(14):A2490-A2499. [24] YAN J H, LIU X B, LI B Y. Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries[J]. RSC Advances, 2014, 4(4):63268-63284. [25] CHA J, HAN J G, HWANG J, et al. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2017, 357:97-106. [26] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie (International ed. in English), 2015, 46(26):4440-4457. [27] JANG S H, YIM T. Effect of silyl ether-functinoalized dimethoxydimethylsilane on electrochemical performance of a Ni-rich NCM cathode[J]. Chemphyschem:A European Journal of Chemical Physics and Physical Chemistry, 2017, 18(23):3402-3406. [28] WANG H, GE W, WANG F, et al. Facile fabrication of ethoxy-functional polysiloxane wrapped LiNi0.6Co0.2Mn0.2O2 cathode with improved cycling performance for rechargeable Li-ion battery[J]. ACS Applied Materials Interfaces, 2016:818439-18449. [29] CAREY F A, SUNDBERG R J. Part A:Structure and mechanisms[M]. Advanced Organic Chemistry, 2009. [30] XU G, PANG C, CHEN B, et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries[J]. Advanced Energy Materials, 2017, 1701398. [31] ZHU Y, LI Y, BETTGE M, et al. Electrolyte additive combinations that enhance performance of high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-graphite cells[J]. Electrochimica Acta, 2013, 110:191-199. [32] ZHU Y, LI Y, BETTGE M, et al. Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(12):A2109-A2117. [33] SU C C, HE M, PEEBLES C, et al. Functionality selection principle for high voltage lithium-ion battery electrolyte additives[J]. ACS Applied Materials & Interfaces, 2017, 9(36):30686-30695. [34] ZHENG X, WANG X, CAI X, et al. Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure[J]. ACS Applied Materials & Interfaces, 2016, 8(44):30116-30125. [35] AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9):1423-1439. [36] LIM S H, CHO W, KIM Y J, et al. Insight into the electrochemical behaviors of 5V-class high-voltage batteries composed of lithium-rich layered oxide with multifunctional additive[J]. Journal of Power Sources, 2016, 336:465-474. [37] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23):11503. [38] KANG X, ARTHUR VON C. Interfacing electrolytes with electrodes in Li ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27):9849-9864. [39] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10):4303-417. [40] SHENG S Z. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2):1379-1394. [41] VERMA P, MAIRE P, NOVáK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22):6332-6341. [42] YIM T, KWON M S, MUN J, et al. Room temperature ionic liquid-based electrolytes as an alternative to carbonate-based electrolytes[J]. Israel Journal of Chemistry, 2015, 55(5):586-598. [43] THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30):3112-3125. [44] CHEN Z, QIN Y, AMINE K, et al. Role of surface coating on cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(36):7606-7612. [45] KIM J H, PARK M S, SONG J H, et al. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3 0.5LiNi0.5Co0.2Mn0.3O2 composite material[J]. Journal of Alloys & Compounds, 2012, 517:20-25. [46] HY S, FELIX F, RICK J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5)[J]. Journal of the American Chemical Society, 2014, 136(3):999-1007. [47] KANG K S, CHOI S, SONG J H, et al. Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature[J]. Journal of Power Sources, 2014, 253(5):48-54. [48] SHI L, WANG W, WANG A, et al. Understanding the impact mechanism of the thermal effect on the porous silicon anode material preparation via magnesiothermic reduction[J]. Journal of Alloys and Compounds, 2016, 661(Supplement C):27-37. [49] XIANG K, WANG X, CHEN M, et al. Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2017, 695(Supplement C):100-105. [50] ZHOU Y, GUO H, YONG Y, et al. Introducing reduced graphene oxide to improve the electrochemical performance of silicon-based materials encapsulated by carbonized polydopamine layer for lithium ion batteries[J]. Materials Letters, 2017, 195(Supplement C):164-167. [51] WANG D, GAO M, PAN H, et al. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization[J]. Journal of Alloys and Compounds, 2014, 604(Supplement C):130-136. [52] ZHANG W, CHEN X, YONG T, et al. Multiwalled carbon nanotube webs welded with Si nanoparticles as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2016, 688(Part B):216-224. [53] ZHU H, YANG K, LAN H, et al. Electrochemical kinetics of Na2Ti3O7 as anode material for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 788(Supplement C):203-209. [54] KIM J S, CHOI W, CHO K Y, et al. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries[J]. Journal of Power Sources, 2013, 244(Supplement C):521-526. [55] YU H, LUO M, QIAN S, et al. Ba0.9La0.1Li2Ti6O14:Advanced lithium storage material for lithium-ion batteries[J]. Electrochimica Acta, 2017, 232(Supplement C):132-141. [56] ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2):1379-1394. [57] XU M, ZHOU L, HAO L, et al. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(16):6794-6801. [58] LIU Y, LV J, FEI Y, et al. Improvement of storage performance of LiMn2O4/graphite battery with AlF3-coated LiMn2O4[J]. Ionics, 2013, 19(9):1241-1246. [59] WANG J, LIU Z, YAN G, et al. Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material:Focus on interfacial stability[J]. Journal of Power Sources, 2016, 329(Supplement C):553-557. [60] WANG W, YANG S. Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive[J]. Journal of Alloys and Compounds, 2017, 695(Supplement C):3249-3255. [61] REZQITA A, SAUER M, FOELSKE A, et al. The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2017, 247:600-609. [62] MICHAN A L, PARIMALAM B S, LESKES M, et al. Fluoroethylene carbonate and vinylene carbonate reduction:Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016, 28(22):8149-8159. [63] LAGGESSE E G, WEI T, NACHIMUTHU S, et al. Theoretical study of the reductive decomposition of vinylethylene sulfite as an additive in lithium ion battery[J]. Journal of the Chinese Chemical Society, 2016, 63(6):480-487. [64] LI B, XU M, LI T, et al. Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries[J]. Electrochemistry Communications, 2012, 17(Supplement C):92-95. [65] LI B, XU M, LI B, et al. Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries[J]. Electrochimica Acta, 2013, 105(Supplement C):1-6. [66] XU K. Electrolytes and interphasial chemistry in Li ion devices[J]. Energies, 2010, 3(1):135-154. [67] MARTINEZ DE LA HOZ J M, BALBUENA P B. Reduction mechanisms of additives on Si anodes of Li-ion batteries[J]. Phys. Chem. Chem. Phys., 2014, 16(32):17091-17098. [68] PROFATILOVA I A, STOCK C, SCHMITZ A, et al. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate[J]. Journal of Power Sources, 2013, 222(Supplement C):140-149. [69] SOTO F A, MA Y, MARTINEZ DE LA HOZ J M, et al. Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries[J]. Chemistry of Materials, 2015, 27(23):7990-8000. [70] SCHRODER K, ALVARADO J, YERSAK T A, et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chemistry of Materials, 2015, 27(16):5531-5542. [71] HUNT P A, KIRCHNER B, WELTON T. Characterising the electronic structure of ionic liquids:An examination of the 1-butyl-3-methylimidazolium chloride ion pair[J]. Chem. Eur. J., 2006, 12:6762-6775. [72] TANG W J, PENG W J, YAN G C, et al. Effect of fluoroethylene carbonate as an electrolyte additive on the cycle performance of silicon-carbon composite anode in lithium-ion battery[J]. Ionics, 2017, 23(12):3281-3288. [73] HERBERT E G, TENHAEFF W E, DUDNEY N J, et al. Mechanical characterization of LiPON films using nanoindentation[J]. Thin Solid Films, 2011, 520(1):413-418. [74] XU C, LINDGREN F, PHILIPPE B, et al. Improved performance of the silicon anode for Li-ion batteries:Understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials, 2015, 27(7):2591-2599. [75] CAMMARATA L, KAZARIAN S G, SALTERB P A, et al. Molecular states of water in room temperature ionic liquids[J]. Phys. Chem. Chem. Phys., 2001, 3:5192-5200. [76] MADEC L, PETIBON R, TASAKI K, et al. Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi1/3Mn1/3Co1/3O2/graphite pouch cells:electrochemical, GC-MS and XPS analysis[J]. Phys. Chem. Chem. Phys., 2015, 17(40):27062-27076. [77] ZHANG B, METZGER M, SOLCHENBACH S, et al. Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation[J]. The Journal of Physical Chemistry C, 2015, 119(21):11337-11348. [78] SHENG S Z. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2):1379-1394. [79] XIANG H F, XU H Y, WANG Z Z, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173(1):562-564. [80] HYUNG Y E, VISSER D R, AMIE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119:383-387. [81] KIM Y, JEONG D Y, HAN S C. First-principles investigation of the gas evolution from the cathodes of lithium-ion batteries during the storage test[J]. Journal of Material Science, 2014, 49:8444-8448. [82] XIAO L F, AI X P, CAO Y L, et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries[J]. Electrochimica Acta, 2004, 49:4189-4196. [83] YOSHIDA H, FUKUNAGA T, HAZAMA T, et al. Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging[J]. Journal of Power Sources, 1997, 68:311-315. [84] ZHUANG G V, YANG H, BLIZANAC B, et al. A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy[J]. Electrochemical and Solid-State Letters, 2005, 8(9):A441-A445. [85] TENG X, ZHAN C, BAI Y, et al. In-situ analysis of gas generation in lithium ion batteries with different carbonate-based electrolytes[J]. ACS Applied Materials Interfaces, 2015, 7(41):22751-22755. [86] XIA J, PETIBON R, XIAO A, et al. Some fluorinated carbonates as electrolyte additives for li(Ni0.4Mn0.4Co0.2)O2/graphite pouch cells[J]. Journal of the Electrochemical Society, 2016, 163(8):A1637-A1645. [87] XIA J, MADEC L, MA L, et al. Study of triallyl phosphate as an electrolyte additive for high voltage lithium-ion cells[J]. Journal of Power Sources, 2015, 295:203-211. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[5] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[6] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[7] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[8] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[9] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[10] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[11] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[12] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[13] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[14] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[15] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||