[1] BAINS J, CROGUENNEC L, BREGER J, et al. Li(Ni0.40Mn0.40Co0.15Al0.05)O2:A promising positive electrode material for high-power and safe lithium-ion batteries[J]. J. Power Sources, 2011(196):8625-8631.
[2] HUANG Yaqun, HUANG Yunhui, HU Xianluo. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4[J]. J. Electro. Acta, 2017(231):294-299.
[3] TIAN Lingyun, LIANG Kui, WEN Xiaofeng, et al. Enhanced cycling stability and rate capability of LiNi0.80Co0.15Al0.05O2 cathode material by a facile coating method[J]. J. Electroanalytical Chemistry, 2018(812):22-27.
[4] TRAN H Y, GRECO G, TAUBERT C, et al. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries[J]. J. Power Sources, 2012(210):276-285.
[5] HE Xiaoshu, DU Chunyu, SHEN Bin, et al. Electronically conductive Sb-doped SnO2 nanoparticles coated LiNi0.8Co0.15Al0.05O2 cathode material with enhanced electrochemical properties for Li-ion batteries[J]. Electrochimica Acta, 2017(236):273-279.
[6] LAI Yanqing, XU Ming, ZHANG Zhi,an, et al. Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film[J]. J. Power Sources, 2016(309):20-26.
[7] HUANG Bin, LI Xinhai, WANG Zhixing, et al. A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method[J]. J. Power Sources, 2014(252):200-207.
[8] DUAN Jianguo, WU Ceng, CAO Yanbing, et al. Enhanced electrochemical performance and thermal stability of LiNi0.8Co0.15Al0.05O2 via nano-sized LiMnPO4 coating[J]. Electrochimica Acta, 2016(221):14-22.
[9] XIA Shubiao, LI Fushao, CHEN Feixiang, et al. Preparation of FePO4 by liquid-phase method and modification on the surface of LiNi0.8Co0.15Al0.05O2 cathode material[J]. Journal of Alloys and and Compounds, 2018(731):428-436.
[10] LEE S H, YOON C S, AMINE K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. J. Power Sources, 2013(234):201-207.
[11] ARORA Pankaj, ZHANG Zhengming. Battery separators[J]. Chem. Rev., 2004, 104:4419-4462.
[12] LEE Yunju, PARK Joonam, JEON Hyunkyu, et al. In-depth correlation of separator pore structure and electrochemical performance in lithium-ion batteries[J]. J. Power Sources, 2016(325):732-738.
[13] LUO Dan, CHEN Meng, XU Jing, et al. Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery[J]. Composites Sciences and Technology, 2018(157):119-125.
[14] JIANG Fengjing, YIN Lei, YU Qingchun, et al. Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries[J]. J. Power Sources, 2015(279):21-27.
[15] SHAYAPAT J, CHUNG O H, PARK J S. Electrospun polyimide-composite separator for lithium-ion batteries[J]. Electrochimica Acta, 2015(170):110-121.
[16] LI Zhen, WANG Wenqiang, HAN Yu, et al. Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator[J]. J. Power Sources, 2018(378):176-183.
[17] WANG Ying, WANG Suqing, FANG Junqi, et al. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries[J]. J. Membrane Science, 2017(537):248-254.
[18] CHOI Y, KIM J, MOON J, et al. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators[J]. Applied Surface Science, 2018(444):339-344.
[19] ZHAO Xinxin, ZHANG Zonglin, YANG Sisi, et al. Inorganic ceramic fiber separator for electrochemical and safety performance improvement of lithium-ion batteries[J]. Ceramics International, 2017(43):14775-14783.
[20] ZHU Xiaoming, JIANG Xiaoyu, AI Xinping, et al. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries[J]. J. Membrane Science, 2016(504):97-103. |