Understanding the structure-activity relationship of electrochemical energy storage system will greatly promote the discovery and regulation of new phenomena and new properties in electrode materials. However, no single technology can clarify all the problems of complex interface reactions in the electrochemical system. Only by observing from multiple perspectives can we see the buried interface and the evolution process under working conditions. Many energy storage materials are rich in transition metal elements, and their magnetic properties are closely related to lattice structure, electronic energy band and electrochemical performance. Therefore, magnetometry can reveal structural phase transition and local electron distribution changes of energy materials, analyze the mechanism of physical and chemical reactions, and guide material design. Focusing on magnetic characterization technology for energy storage, this paper firstly discusses the technical principle of magnetometry, and then summarizes the research progress of magnetometry in studying the structural characteristics of electrode materials and characterizing the reaction process, especially introduces the unique advantages of in-situ magnetometry in monitoring the magnetic changes in real time and illustrating the reaction mechanism. Comprehensive analysis shows that in-situ magnetometry technology can characterize the charge transfer in electrochemical reactions with high sensitivity and rapid response, which provides a new idea for revealing the electrochemical reactions at complex interfaces and has broad application prospects in energy storage science. This paper is helpful to understand the important value of magnetometry technique in the research of battery materials and further promote the development of magnetometry technique in the field of energy storage.
图3
(a) 橄榄石磷酸盐的晶体和磁性结构[11];(b) LiNi x Mn x Co1-2x O2 类材料的结构及Ni2+ 离子之间的超交换作用[20]
Fig. 3
(a) crystal and magnetic structure of olivine phosphates[11]; (b) structure of LiNi x Mn x Co1-2x O2 and antiferromagnetic (AF) exchange between Ni2+ ions[20]
Fig. 4
(a) temperature dependence of magnetic susceptibility of stoichiometric LiFePO4 synthesized at 200 ℃ (1) and iron-rich compound Li0.94Li0.03FePO4 (2); (b) temperature dependence of magnetic susceptibility of LiFePO4 synthesized using hydrazine as a reducing agent[25]
Fig. 5
(a) M-H curves for Lithium lack LiFePO4; (b) M-T curves for Lithium lack LiFePO4; (c) structural analogy between LiFePO4 (left) and Fe3(PO4)2 (right)[31]; (d) FC/ZFC curves of LiFePO4 with external magnetic fields applied along B||c、B||b and B||a[32]
Nakamura等[40]运用磁性测试研究了LiMn2-x Ni x O4中随着Ni取代量的增加(即x的增加),材料的磁性变化[图6(a)]。测试结果显示,随着Ni取代量的增加,材料发生了由反铁磁性向铁磁性的转变,这是因为Ni的掺杂在材料中形成了新的超交换作用[图6(c)]。Abdel-Ghany等[41]运用磁性测量的方法对LiNi0.5Mn0.5O2材料中的Ni-Li置换现象进行了研究。M-T的测试结果表明,材料在200 K发生了铁磁性向顺磁性的转变,然而计算结果显示材料的居里温度应该为140 K左右,这表明140 K左右材料表现出的铁磁性[图6(b)]来自于某种内在的材料缺陷。结合其他工作[42-43]中的报道,作者认为异常的磁性变化来自于Ni占据了Li位[图6(c)]。
图6
(a) 700 ℃制备的LiMn2-x Ni x O4 的磁化率随温度的变化[40];(b) 不同方法制备的LiNi0.5Mn0.5O2 材料的 M-T 曲线[41];(c) LiMn2-x Ni x O4 材料中正常情况(左)、Mn影响下的Ni占据Li位(中)以及单纯的Ni占据Li位引起的磁性变化[20]
Fig. 6
(a) temperature variation of magnetic susceptibility for LiMn2-x Ni x O4 prepared at 700 ℃ [40]; (b) M-T curve of LiNi0.5Mn0.5O2 prepared by difference methods[41]; (c) magnetic changes of LiMn2-x Ni x O4 materials under normal conditions (left), Ni occupying Li sites with Mn influence (middle) and Ni occupying Li sites alone[20]
图7
(a) Li x FePO4(0 ≤ x ≤ 1)的 M-T 曲线;(b) Li0.28FePO4 、Li0.12FePO4 和FePO4 的详细磁化率,对应于(a)的阴影部分;(c) Li x FePO4 高度脱锂状态下室温磁性起源[46];(d) LiMn y Fe1-y PO4 的 M-T 曲线;(e) Mn y Fe1-y PO4 的 M-T 曲线[47]
Fig. 7
Temperature dependence of magnetic susceptibility of Li x FePO4 (0 ≤ x ≤ 1); (b) detailed magnetic susceptibility of Li0.28FePO4, Li0.12FePO4 and FePO4, corresponding to shaded section in panel (a); (c) schematic illustration of origin of room-temperature magnetism at high delithiation state of Li x FePO4[46]; (d) M-T curves of LiMn y Fe1-y PO4; (e) M-T curves of Mn y Fe1-y PO4[47]
在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50]。然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51]。然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究。为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究。Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点。他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的。他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应。如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌。
在LiMO2类材料中,通过离子掺杂形成的LiNi1-2x Co x Mn x O2类材料因优异的性能而受到广泛的关注,此类材料中不同种类的过渡金属离子对该化合物的稳定性和电化学活性起着重要的作用。一般认为,Ni是电化学活性物质,Mn提供结构稳定性,Co促进锂离子和镍离子在各自晶格位上的有序排列[19]。然而实际情况下,由于Ni离子的半径和Li离子的半径相似,在脱锂过程中,Ni往往会迁移至Li空位,不仅影响Li离子的扩散,还会引起容量的衰减[19]。Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20]。磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+。当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的。Mohanty团队[54]对该问题也进行了相似的研究。研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨。
图8
(a) 温度对LiNi y Mn y Co1-2y O2 磁化率的影响;(b) 磁化率的倒数曲线以及居里外斯定律拟合(实线)[20];(c) 不同温度下合成的LiNi0.45Mn0.45Co0.1O2 的磁化率的 M-T 曲线及其对居里-外斯定律的拟合(实线)[7];(d) LiNi1/3Mn1/3Co1/3O2 和Li0.80Ni1/3Mn1/3Co1/3O2 的FC/ZFC曲线;(e) LiNi1/3Mn1/3Co1/3O2 在脱锂和老化过程中微观结构变化[54]
Fig. 8
(a) temperature dependences of magnetic susceptibilities of LiNi y Mn y Co1-2y O2; (b) reciprocal susceptibilities and their fit to Curie-Weiss law (solid lines)[20]; (c) temperature dependences of reciprocal susceptibility of LiNi0.45Mn0.45Co0.1O2 synthesized at various temperatures and their fit to Curie-Weiss law (solid lines)[7]; (d) FC/ZFC curves of LiNi1/3Mn1/3Co1/3O2 and Li0.80Ni1/3Mn1/3Co1/3O2; (e) representation of change in microstructure during delithiation and ageing of LiNi1/3Mn1/3Co1/3O2[54]
Fig. 9
(a) in situ battery diagram of Würschum team; (b) cyclic curve of LiCoO2 electrodes during galvanostatic cycling and corresponding in situ magnetic moment[61]; (c) in situ battery diagram of Gershinsky team; (d) FeSb2 ’s cyclic curve during galvanostatic cycling(black) and corresponding in situ magnetic moment at 300 K (blue)[64]
Fig. 11
(a) operando magnetometry in an Fe3O4/Li cell as a function of electrochemical cycling under an applied magnetic field of 3 T; (b) schematic of spin-polarized density of states at surface of ferromagnetic metal grains (before and after discharge); (c) formation of a space charge zone in surface capacitance model for extra lithium storage[65]
Fig. 12
(a) schematic of theoretical electron transfer in polymer films; (b) operando magnetic monitoring on a CoO1-x /Co LIB as a function of CV scanning at an applied magnetic field of 3 T; (c) magnified view of dotted area[66]
Fig. 13
(a) variation of operando magnetic responses with Co content in Co/CoO films; (b) variation of operando magnetic responses with thinkness of Co/CoO films[79]
Fig. 14
(a) cyclic curves and operando magnetometry of FeS2 sodium ion battery; (b) M-H curves of FeS2 electrodes after discharge to 0.01 V in SIBs and LIBs at 300 K[82]; (c) electrochemical charge-discharge profiles of FeSe2 and corresponding reversible in situ magnetic response at an applied magnetic field of 3 T[85]
ZHANG L Q, TANG Y F, LIU Q N, et al. Review of in situ transmission electron microscopy studies of battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1050-1061.
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236.
CHERNOVA N A, NOLIS G M, OMENYA F O, et al. What can we learn about battery materials from their magnetic properties?[J]. Journal of Materials Chemistry, 2011, 21(27): 9865-9875.
GOODENOUGH J B, WICKHAM D G, CROFT W J. Some magnetic and crystallographic properties of the system LixNi1-2xNixO[J]. Journal of Physics and Chemistry of Solids, 1958, 5(1/2): 107-116.
XIAO J, CHERNOVA N A, WHITTINGHAM M S. Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries[J]. Chemistry of Materials, 2008, 20(24): 7454-7464.
AIT SALAH A, MAUGER A, ZAGHIB K, et al. Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition[J]. Journal of the Electrochemical Society, 2006, 153(9): doi: 10.1149/1.2213527.
RAVET N, GAUTHIER M, ZAGHIB K, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive[J]. Chemistry of Materials, 2007, 19(10): 2595-2602.
ZAGHIB K, MAUGER A, GOODENOUGH J B, et al. Electronic, optical, and magnetic properties of LiFePO4: Small magnetic polaron effects[J]. Chemistry of Materials, 2007, 19(15): 3740-3747.
WHITTINGHAM M S, SONG Y N, LUTTA S, et al. Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries[J]. Journal of Materials Chemistry, 2005, 15(33): doi: 10.1039/B501961C.
ZAGHIB K, RAVET N, GAUTHIER M, et al. Optimized electrochemical performance of LiFePO4 at 60 ℃ with purity controlled by SQUID magnetometry[J]. Journal of Power Sources, 2006, 163(1): 560-566.
OMENYA F, CHERNOVA N A, UPRETI S, et al. Can vanadium be substituted into LiFePO4?[J]. Chemistry of Materials, 2011, 23(21): 4733-4740.
UPRETI S, CHERNOVA N A, XIAO J, et al. Crystal structure, physical properties, and electrochemistry of copper substituted LiFePO4 single crystals[J]. Chemistry of Materials, 2012, 24(1): 166-173.
XIAO J, CHERNOVA N A, UPRETI S, et al. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(40): 18099-18106.
CHERNOVA N A, MA M M, XIAO J, et al. Layered LixNiyMnyCo1-2yO2 cathodes for lithium ion batteries: Understanding local structure via magnetic properties[J]. Chemistry of Materials, 2007, 19(19): 4682-4693.
LI J Y, GARLEA V O, ZARESTKY J L, et al. Spin-waves in antiferromagnetic single-crystal LiFePO4[J]. Physical Review B, 2006, 73(2): doi: 10.1103/PhysRevB.73.024410.
PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
YANG M R, TENG T H, WU S H. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J]. Journal of Power Sources, 2006, 159(1): 307-311.
CHEN J J, VACCHIO M J, WANG S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178(31/32): 1676-1693.
SALAH A A, MAUGER A, JULIEN C M, et al. Nano-sized impurity phases in relation to the mode of preparation of LiFePO4[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 232-244.
GARDINER G R, ISLAM M S. Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material[J]. Chemistry of Materials, 2010, 22(3): 1242-1248.
MALIK R, BURCH D, BAZANT M, et al. Particle size dependence of the ionic diffusivity[J]. Nano Letters, 2010, 10(10): 4123-4127.
YANG J J, TSE J S. Li ion diffusion mechanisms in LiFePO4: An ab initio molecular dynamics study[J]. The Journal of Physical Chemistry A, 2011, 115(45): 13045-13049.
AXMANN P, STINNER C, WOHLFAHRT-MEHRENS M, et al. Nonstoichiometric LiFePO4: Defects and related properties[J]. Chemistry of Materials, 2009, 21(8): 1636-1644.
WERNER J, NEEF C, KOO C, et al. Antisite disorder in the battery material LiFePO4[J]. Physical Review Materials, 2020, 4(11): doi: 10.1103/PhysRevMaterials.4.115403.
JIAO S H, REN X D, CAO R G, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746.
KANG K, MENG Y S, BRÉGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980.
MARTHA S K, SCLAR H, SZMUK FRAMOWITZ Z, et al. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds[J]. Journal of Power Sources, 2009, 189(1): 248-255.
ARMSTRONG A R, HOLZAPFEL M, NOVÁK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698.
THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125.
CHAPPEL E, NÚÑEZ-REGUEIRO M D, CHOUTEAU G, et al. Low field magnetism and cationic distribution in quasi-stoichiometric Li1-xNi1+xO2[J]. Solid State Communications, 2001, 119(2): 83-87.
CHAPPEL E, NÚÑEZ-REGUEIRO M D, DE BRION S, et al. Interlayer magnetic frustration in quasistoichiometric Li1-xNi1+xO2[J]. Physical Review B, 2002, 66(13): doi: 10.1103/PhysRevB.66.132412.
NAKAMURA T, YAMADA Y, TABUCHI M. Magnetic and electrochemical studies on Ni2+-substituted Li-Mn spinel oxides[J]. Journal of Applied Physics, 2005, 98(9): doi: 10.1063/1.2128469.
ABDEL-GHANY A, ZAGHIB K, GENDRON F, et al. Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(12): 4092-4100.
MACNEIL D D, LU Z, DAHN J R. Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0≤x≤1/2)[J]. Journal of the Electrochemical Society, 2002, 149(10): doi: 10.1149/1.1505633.
KOBAYASHI H, SAKAEBE H, KAGEYAMA H, et al. Changes in the structure and physical properties of the solid solution LiNi1-xMnxO2 with variation in its composition[J]. Journal of Materials Chemistry, 2003, 13(3): 590-595.
ROUSSE G, RODRIGUEZ-CARVAJAL J, PATOUX S, et al. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4[J]. Chemistry of Materials, 2003, 15(21): 4082-4090.
HU J T, ZENG H, CHEN X, et al. Revealing insights into LixFePO4 nanocrystals with magnetic order at room temperature resulting in trapping of Li ions[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 4794-4799.
KOPE¢ M, YAMADA A, KOBAYASHI G, et al. Structural and magnetic properties of Lix(MnyFe1-y)PO4 electrode materials for Li-ion batteries[J]. Journal of Power Sources, 2009, 189(2): 1154-1163.
KÖNTJE M, MEMM M, AXMANN P, et al. Substituted transition metal phospho olivines LiMM'PO4 (M=Mn, M'=Fe, Co, Mg): Optimisation routes for LiMnPO4[J]. Progress in Solid State Chemistry, 2014, 42(4): 106-117.
CHOI D, XIAO J, CHOI Y J, et al. Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries[J]. Energy & Environmental Science, 2011, 4(11): doi: 10.1039/CIEE01501J.
LIU Y M, GU Y, ZENG H, et al. Role of superexchange interactions on the arrangement of Fe and Mn in LiMnxFe1-xPO4[J]. The Journal of Physical Chemistry C, 2019, 123(27): 17002-17009.
YAMADA A, TAKEI Y, KOIZUMI H, et al. Electrochemical, magnetic, and structural investigation of the Lix(MnyFe1-y)PO4 olivine phases[J]. Chemistry of Materials, 2006, 18(3): 804-813.
MOHANTY D, GABRISCH H. Microstructural investigation of LixNi1/3Mn1/3Co1/3O2 (x≤1) and its aged products via magnetic and diffraction study[J]. Journal of Power Sources, 2012, 220: 405-412.
XIAO Y G, LIU T C, LIU J J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials[J]. Nano Energy, 2018, 49: 77-85.
MIAO P, WANG R, ZHU W M, et al. Revealing magnetic ground state of a layered cathode material by muon spin relaxation and neutron scattering experiments[J]. Applied Physics Letters, 2019, 114(20): doi: 10.1063/1.5096620.
ZHENG J X, YE Y K, LIU T C, et al. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control[J]. Accounts of Chemical Research, 2019, 52(8): 2201-2209.
MOORHEAD-ROSENBERG Z, SHIN D W, CHEMELEWSKI K R, et al. Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements[J]. Applied Physics Letters, 2012, 100(21): doi: 10.1063/1.4722927.
KLINSER G, TOPOLOVEC S, KREN H, et al. Continuous monitoring of the bulk oxidation states in LixNi1/3Mn1/3Co1/3O2 during charging and discharging[J]. Applied Physics Letters, 2016, 109(21): doi: 10.1063/1.4968547.
KLINSER G, TOPOLOVEC S, KREN H, et al. Charging of lithium cobalt oxide battery cathodes studied by means of magnetometry[J]. Solid State Ionics, 2016, 293: 64-71.
TOPOLOVEC S, KREN H, KLINSER G, et al. Operando magnetometry on LixCoO2 during charging/discharging[J]. Journal of Solid State Electrochemistry, 2016, 20(5): 1491-1496.
WÜRSCHUM R, TOPOLOVEC S, KLINSER G, et al. Defects and charging processes in Li-ion battery cathodes studied by operando magnetometry and positron annihilation[J]. Materials Science Forum, 2016, 879: 2125-2130.
KLINSER G, STÜCKLER M, KREN H, et al. Charging processes in the cathode LiNi0.6Mn0.2Co0.2O2 as revealed by operando magnetometry[J]. Journal of Power Sources, 2018, 396: 791-795.
GERSHINSKY G, BAR E, MONCONDUIT L, et al. Operando electron magnetic measurements of Li-ion batteries[J]. Energy & Environmental Science, 2014, 7(6): 2012-2016.
LI Q, LI H S, XIA Q T, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry[J]. Nature Materials, 2021, 20(1): 76-83.
LI H S, HU Z Q, XIA Q T, et al. Operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries[J]. Advanced Materials, 2021, 33(12): doi: 10.1002/adma.202006629.
KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976.
LARUELLE S, GRUGEON S, POIZOT P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential[J]. Journal of the Electrochemical Society, 2002, 149(5): doi: 10.1149/1.1467947.
ZHUKOVSKII Y F, BALAYA P, KOTOMIN E A, et al. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations[J]. Physical Review Letters, 2006, 96(5): doi: 10.1103/PhysRevLett.96.058302.
MAIER J. Mass storage in space charge regions of nano-sized systems: (Nano-ionics. Part V)[J]. Faraday Discuss, 2007, 134: 51-66.
FU L J, CHEN C C, MAIER J. Interfacial mass storage in nanocomposites[J]. Solid State Ionics, 2018, 318: 54-59.
HU Y Y, LIU Z, NAM K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature Materials, 2013, 12(12): 1130-1136.
ZHANG W, BOCK D C, PELLICCIONE C J, et al. Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions[J]. Advanced Energy Materials, 2016, 6(10): doi: 10.1002/aenm.201502471.
KOMABA S, MIKUMO T, YABUUCHI N, et al. Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α-Fe2O3 for rechargeable batteries[J]. Journal of the Electrochemical Society, 2010, 157(1): doi: 10.1149/1.3254160.
DUAN C G, VELEV J P, SABIRIANOV R F, et al. Surface magnetoelectric effect in ferromagnetic metal films[J]. Physical Review Letters, 2008, 101(13): doi: 10.1103/PhysRevLett.101.137201.137201.
GRUGEON S, LARUELLE S, DUPONT L, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li[J]. Solid State Sciences, 2003, 5(6): 895-904.
LI X K, LI Z H, LIU Y, et al. Transition metal catalysis in lithium-ion batteries studied by operando magnetometry[J]. Chinese Journal of Catalysis, 2022, 43(1): 158-166.
HU Z, LIU Q N, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201700606.
WANG H G, YUAN S, MA D L, et al. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance[J]. Energy & Environmental Science, 2015, 8(6): 1660-1681.
LI Z H, ZHANG Y C, LI X K, et al. Reacquainting the electrochemical conversion mechanism of FeS2 sodium-ion batteries by operando magnetometry[J]. Journal of the American Chemical Society, 2021, 143(32): 12800-12808.
SON S B, YERSAK T A, PIPER D M, et al. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte[J]. Advanced Energy Materials, 2014, 4(3): doi: 10.1002/aenm.201300961.
XU X, CAI T W, MENG Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery[J]. Journal of Power Sources, 2016, 331: 366-372.
WANG H Z, ZHAO L Y, ZHANG H, et al. Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe2 cathode for aluminium-ion batteries by in situ magnetometry[J]. Energy & Environmental Science, 2022, 15(1): 311-319.
HUANG J, LING S G, WANG X L, et al. Fundamental scientific aspects of lithium ion batteries(XIV)—Calculation methods[J]. Energy Storage Science and Technology, 2015, 4(2): 215-230.
WANG D, ZHOU H, JIAO Y, et al. The understanding and performance prediction of ions-intercalation electrochemistry: From crystal field theory to ligand field theory[J]. Energy Storage Science and Technology, 2022,11(2): 409-433.
GENG F S, HU B W. Progress in magnetic resonance research of important cathode materials in lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1017-1023.
... 在LiMO2类材料中,通过离子掺杂形成的LiNi1-2x Co x Mn x O2类材料因优异的性能而受到广泛的关注,此类材料中不同种类的过渡金属离子对该化合物的稳定性和电化学活性起着重要的作用.一般认为,Ni是电化学活性物质,Mn提供结构稳定性,Co促进锂离子和镍离子在各自晶格位上的有序排列[19].然而实际情况下,由于Ni离子的半径和Li离子的半径相似,在脱锂过程中,Ni往往会迁移至Li空位,不仅影响Li离子的扩散,还会引起容量的衰减[19].Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20].磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+.当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的.Mohanty团队[54]对该问题也进行了相似的研究.研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨. ...
... [7];(d) LiNi1/3Mn1/3Co1/3O2 和Li0.80Ni1/3Mn1/3Co1/3O2 的FC/ZFC曲线;(e) LiNi1/3Mn1/3Co1/3O2 在脱锂和老化过程中微观结构变化[54](a) temperature dependences of magnetic susceptibilities of LiNi y Mn y Co1-2y O2; (b) reciprocal susceptibilities and their fit to Curie-Weiss law (solid lines)[20]; (c) temperature dependences of reciprocal susceptibility of LiNi0.45Mn0.45Co0.1O2 synthesized at various temperatures and their fit to Curie-Weiss law (solid lines)[7]; (d) FC/ZFC curves of LiNi1/3Mn1/3Co1/3O2 and Li0.80Ni1/3Mn1/3Co1/3O2; (e) representation of change in microstructure during delithiation and ageing of LiNi1/3Mn1/3Co1/3O2[54]Fig. 83 原位磁性测试
... [7]; (d) FC/ZFC curves of LiNi1/3Mn1/3Co1/3O2 and Li0.80Ni1/3Mn1/3Co1/3O2; (e) representation of change in microstructure during delithiation and ageing of LiNi1/3Mn1/3Co1/3O2[54]Fig. 83 原位磁性测试
(a) 橄榄石磷酸盐的晶体和磁性结构[11];(b) LiNi x Mn x Co1-2x O2 类材料的结构及Ni2+ 离子之间的超交换作用[20]
(a) crystal and magnetic structure of olivine phosphates[11]; (b) structure of LiNi x Mn x Co1-2x O2 and antiferromagnetic (AF) exchange between Ni2+ ions[20]Fig. 3
(a) temperature dependence of magnetic susceptibility of stoichiometric LiFePO4 synthesized at 200 ℃ (1) and iron-rich compound Li0.94Li0.03FePO4 (2); (b) temperature dependence of magnetic susceptibility of LiFePO4 synthesized using hydrazine as a reducing agent[25]Fig. 4
(a) temperature dependence of magnetic susceptibility of stoichiometric LiFePO4 synthesized at 200 ℃ (1) and iron-rich compound Li0.94Li0.03FePO4 (2); (b) temperature dependence of magnetic susceptibility of LiFePO4 synthesized using hydrazine as a reducing agent[25]Fig. 4
... 在LiMO2类材料中,通过离子掺杂形成的LiNi1-2x Co x Mn x O2类材料因优异的性能而受到广泛的关注,此类材料中不同种类的过渡金属离子对该化合物的稳定性和电化学活性起着重要的作用.一般认为,Ni是电化学活性物质,Mn提供结构稳定性,Co促进锂离子和镍离子在各自晶格位上的有序排列[19].然而实际情况下,由于Ni离子的半径和Li离子的半径相似,在脱锂过程中,Ni往往会迁移至Li空位,不仅影响Li离子的扩散,还会引起容量的衰减[19].Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20].磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+.当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的.Mohanty团队[54]对该问题也进行了相似的研究.研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨. ...
... [19].Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20].磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+.当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的.Mohanty团队[54]对该问题也进行了相似的研究.研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨. ...
(a) 橄榄石磷酸盐的晶体和磁性结构[11];(b) LiNi x Mn x Co1-2x O2 类材料的结构及Ni2+ 离子之间的超交换作用[20]
(a) crystal and magnetic structure of olivine phosphates[11]; (b) structure of LiNi x Mn x Co1-2x O2 and antiferromagnetic (AF) exchange between Ni2+ ions[20]Fig. 3
(a) temperature dependence of magnetic susceptibility of stoichiometric LiFePO4 synthesized at 200 ℃ (1) and iron-rich compound Li0.94Li0.03FePO4 (2); (b) temperature dependence of magnetic susceptibility of LiFePO4 synthesized using hydrazine as a reducing agent[25]Fig. 4
(a) temperature dependence of magnetic susceptibility of stoichiometric LiFePO4 synthesized at 200 ℃ (1) and iron-rich compound Li0.94Li0.03FePO4 (2); (b) temperature dependence of magnetic susceptibility of LiFePO4 synthesized using hydrazine as a reducing agent[25]Fig. 4
... Nakamura等[40]运用磁性测试研究了LiMn2-x Ni x O4中随着Ni取代量的增加(即x的增加),材料的磁性变化[图6(a)].测试结果显示,随着Ni取代量的增加,材料发生了由反铁磁性向铁磁性的转变,这是因为Ni的掺杂在材料中形成了新的超交换作用[图6(c)].Abdel-Ghany等[41]运用磁性测量的方法对LiNi0.5Mn0.5O2材料中的Ni-Li置换现象进行了研究.M-T的测试结果表明,材料在200 K发生了铁磁性向顺磁性的转变,然而计算结果显示材料的居里温度应该为140 K左右,这表明140 K左右材料表现出的铁磁性[图6(b)]来自于某种内在的材料缺陷.结合其他工作[42-43]中的报道,作者认为异常的磁性变化来自于Ni占据了Li位[图6(c)].
(a) 700 ℃制备的LiMn2-x Ni x O4 的磁化率随温度的变化[40];(b) 不同方法制备的LiNi0.5Mn0.5O2 材料的 M-T 曲线[41];(c) LiMn2-x Ni x O4 材料中正常情况(左)、Mn影响下的Ni占据Li位(中)以及单纯的Ni占据Li位引起的磁性变化[20]
(a) temperature variation of magnetic susceptibility for LiMn2-x Ni x O4 prepared at 700 ℃ [40]; (b) M-T curve of LiNi0.5Mn0.5O2 prepared by difference methods[41]; (c) magnetic changes of LiMn2-x Ni x O4 materials under normal conditions (left), Ni occupying Li sites with Mn influence (middle) and Ni occupying Li sites alone[20]Fig. 62.2 探究过渡族金属元素比例及价态
... 在LiMO2类材料中,通过离子掺杂形成的LiNi1-2x Co x Mn x O2类材料因优异的性能而受到广泛的关注,此类材料中不同种类的过渡金属离子对该化合物的稳定性和电化学活性起着重要的作用.一般认为,Ni是电化学活性物质,Mn提供结构稳定性,Co促进锂离子和镍离子在各自晶格位上的有序排列[19].然而实际情况下,由于Ni离子的半径和Li离子的半径相似,在脱锂过程中,Ni往往会迁移至Li空位,不仅影响Li离子的扩散,还会引起容量的衰减[19].Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20].磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+.当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的.Mohanty团队[54]对该问题也进行了相似的研究.研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨. ...
... [20];(c) 不同温度下合成的LiNi0.45Mn0.45Co0.1O2 的磁化率的 M-T 曲线及其对居里-外斯定律的拟合(实线)[7];(d) LiNi1/3Mn1/3Co1/3O2 和Li0.80Ni1/3Mn1/3Co1/3O2 的FC/ZFC曲线;(e) LiNi1/3Mn1/3Co1/3O2 在脱锂和老化过程中微观结构变化[54](a) temperature dependences of magnetic susceptibilities of LiNi y Mn y Co1-2y O2; (b) reciprocal susceptibilities and their fit to Curie-Weiss law (solid lines)[20]; (c) temperature dependences of reciprocal susceptibility of LiNi0.45Mn0.45Co0.1O2 synthesized at various temperatures and their fit to Curie-Weiss law (solid lines)[7]; (d) FC/ZFC curves of LiNi1/3Mn1/3Co1/3O2 and Li0.80Ni1/3Mn1/3Co1/3O2; (e) representation of change in microstructure during delithiation and ageing of LiNi1/3Mn1/3Co1/3O2[54]Fig. 83 原位磁性测试
... [20]; (c) temperature dependences of reciprocal susceptibility of LiNi0.45Mn0.45Co0.1O2 synthesized at various temperatures and their fit to Curie-Weiss law (solid lines)[7]; (d) FC/ZFC curves of LiNi1/3Mn1/3Co1/3O2 and Li0.80Ni1/3Mn1/3Co1/3O2; (e) representation of change in microstructure during delithiation and ageing of LiNi1/3Mn1/3Co1/3O2[54]Fig. 83 原位磁性测试
... [25](a) temperature dependence of magnetic susceptibility of stoichiometric LiFePO4 synthesized at 200 ℃ (1) and iron-rich compound Li0.94Li0.03FePO4 (2); (b) temperature dependence of magnetic susceptibility of LiFePO4 synthesized using hydrazine as a reducing agent[25]Fig. 4
... [31];(d) LiFePO4 沿着B||c、B||b和B||a方向的FC/ZFC曲线[32](a) M-H curves for Lithium lack LiFePO4; (b) M-T curves for Lithium lack LiFePO4; (c) structural analogy between LiFePO4 (left) and Fe3(PO4)2 (right)[31]; (d) FC/ZFC curves of LiFePO4 with external magnetic fields applied along B||c、B||b and B||a[32]Fig. 5
... [32](a) M-H curves for Lithium lack LiFePO4; (b) M-T curves for Lithium lack LiFePO4; (c) structural analogy between LiFePO4 (left) and Fe3(PO4)2 (right)[31]; (d) FC/ZFC curves of LiFePO4 with external magnetic fields applied along B||c、B||b and B||a[32]Fig. 5
... Nakamura等[40]运用磁性测试研究了LiMn2-x Ni x O4中随着Ni取代量的增加(即x的增加),材料的磁性变化[图6(a)].测试结果显示,随着Ni取代量的增加,材料发生了由反铁磁性向铁磁性的转变,这是因为Ni的掺杂在材料中形成了新的超交换作用[图6(c)].Abdel-Ghany等[41]运用磁性测量的方法对LiNi0.5Mn0.5O2材料中的Ni-Li置换现象进行了研究.M-T的测试结果表明,材料在200 K发生了铁磁性向顺磁性的转变,然而计算结果显示材料的居里温度应该为140 K左右,这表明140 K左右材料表现出的铁磁性[图6(b)]来自于某种内在的材料缺陷.结合其他工作[42-43]中的报道,作者认为异常的磁性变化来自于Ni占据了Li位[图6(c)]. ...
... [40];(b) 不同方法制备的LiNi0.5Mn0.5O2 材料的 M-T 曲线[41];(c) LiMn2-x Ni x O4 材料中正常情况(左)、Mn影响下的Ni占据Li位(中)以及单纯的Ni占据Li位引起的磁性变化[20](a) temperature variation of magnetic susceptibility for LiMn2-x Ni x O4 prepared at 700 ℃ [40]; (b) M-T curve of LiNi0.5Mn0.5O2 prepared by difference methods[41]; (c) magnetic changes of LiMn2-x Ni x O4 materials under normal conditions (left), Ni occupying Li sites with Mn influence (middle) and Ni occupying Li sites alone[20]Fig. 62.2 探究过渡族金属元素比例及价态
... [40]; (b) M-T curve of LiNi0.5Mn0.5O2 prepared by difference methods[41]; (c) magnetic changes of LiMn2-x Ni x O4 materials under normal conditions (left), Ni occupying Li sites with Mn influence (middle) and Ni occupying Li sites alone[20]Fig. 62.2 探究过渡族金属元素比例及价态
... Nakamura等[40]运用磁性测试研究了LiMn2-x Ni x O4中随着Ni取代量的增加(即x的增加),材料的磁性变化[图6(a)].测试结果显示,随着Ni取代量的增加,材料发生了由反铁磁性向铁磁性的转变,这是因为Ni的掺杂在材料中形成了新的超交换作用[图6(c)].Abdel-Ghany等[41]运用磁性测量的方法对LiNi0.5Mn0.5O2材料中的Ni-Li置换现象进行了研究.M-T的测试结果表明,材料在200 K发生了铁磁性向顺磁性的转变,然而计算结果显示材料的居里温度应该为140 K左右,这表明140 K左右材料表现出的铁磁性[图6(b)]来自于某种内在的材料缺陷.结合其他工作[42-43]中的报道,作者认为异常的磁性变化来自于Ni占据了Li位[图6(c)]. ...
... [41];(c) LiMn2-x Ni x O4 材料中正常情况(左)、Mn影响下的Ni占据Li位(中)以及单纯的Ni占据Li位引起的磁性变化[20](a) temperature variation of magnetic susceptibility for LiMn2-x Ni x O4 prepared at 700 ℃ [40]; (b) M-T curve of LiNi0.5Mn0.5O2 prepared by difference methods[41]; (c) magnetic changes of LiMn2-x Ni x O4 materials under normal conditions (left), Ni occupying Li sites with Mn influence (middle) and Ni occupying Li sites alone[20]Fig. 62.2 探究过渡族金属元素比例及价态
... [41]; (c) magnetic changes of LiMn2-x Ni x O4 materials under normal conditions (left), Ni occupying Li sites with Mn influence (middle) and Ni occupying Li sites alone[20]Fig. 62.2 探究过渡族金属元素比例及价态
... Nakamura等[40]运用磁性测试研究了LiMn2-x Ni x O4中随着Ni取代量的增加(即x的增加),材料的磁性变化[图6(a)].测试结果显示,随着Ni取代量的增加,材料发生了由反铁磁性向铁磁性的转变,这是因为Ni的掺杂在材料中形成了新的超交换作用[图6(c)].Abdel-Ghany等[41]运用磁性测量的方法对LiNi0.5Mn0.5O2材料中的Ni-Li置换现象进行了研究.M-T的测试结果表明,材料在200 K发生了铁磁性向顺磁性的转变,然而计算结果显示材料的居里温度应该为140 K左右,这表明140 K左右材料表现出的铁磁性[图6(b)]来自于某种内在的材料缺陷.结合其他工作[42-43]中的报道,作者认为异常的磁性变化来自于Ni占据了Li位[图6(c)]. ...
1
... Nakamura等[40]运用磁性测试研究了LiMn2-x Ni x O4中随着Ni取代量的增加(即x的增加),材料的磁性变化[图6(a)].测试结果显示,随着Ni取代量的增加,材料发生了由反铁磁性向铁磁性的转变,这是因为Ni的掺杂在材料中形成了新的超交换作用[图6(c)].Abdel-Ghany等[41]运用磁性测量的方法对LiNi0.5Mn0.5O2材料中的Ni-Li置换现象进行了研究.M-T的测试结果表明,材料在200 K发生了铁磁性向顺磁性的转变,然而计算结果显示材料的居里温度应该为140 K左右,这表明140 K左右材料表现出的铁磁性[图6(b)]来自于某种内在的材料缺陷.结合其他工作[42-43]中的报道,作者认为异常的磁性变化来自于Ni占据了Li位[图6(c)]. ...
... [46];(d) LiMn y Fe1-y PO4 的 M-T 曲线;(e) Mn y Fe1-y PO4 的 M-T 曲线[47]Temperature dependence of magnetic susceptibility of Li x FePO4 (0 ≤ x ≤ 1); (b) detailed magnetic susceptibility of Li0.28FePO4, Li0.12FePO4 and FePO4, corresponding to shaded section in panel (a); (c) schematic illustration of origin of room-temperature magnetism at high delithiation state of Li x FePO4[46]; (d) M-T curves of LiMn y Fe1-y PO4; (e) M-T curves of Mn y Fe1-y PO4[47]Fig. 7
在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
... [46]; (d) M-T curves of LiMn y Fe1-y PO4; (e) M-T curves of Mn y Fe1-y PO4[47]Fig. 7
在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
(a) Li x FePO4(0 ≤ x ≤ 1)的 M-T 曲线;(b) Li0.28FePO4 、Li0.12FePO4 和FePO4 的详细磁化率,对应于(a)的阴影部分;(c) Li x FePO4 高度脱锂状态下室温磁性起源[46];(d) LiMn y Fe1-y PO4 的 M-T 曲线;(e) Mn y Fe1-y PO4 的 M-T 曲线[47]
Temperature dependence of magnetic susceptibility of Li x FePO4 (0 ≤ x ≤ 1); (b) detailed magnetic susceptibility of Li0.28FePO4, Li0.12FePO4 and FePO4, corresponding to shaded section in panel (a); (c) schematic illustration of origin of room-temperature magnetism at high delithiation state of Li x FePO4[46]; (d) M-T curves of LiMn y Fe1-y PO4; (e) M-T curves of Mn y Fe1-y PO4[47]Fig. 7
在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
... [47]Fig. 7
在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
... 在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
1
... 在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
0
2
... 在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
... [50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
1
... 在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
1
... 在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
1
... 在LiFePO4的研究中,利用Mn离子取代部分Fe离子,能够达到中和两者优势、提高性能的目的[48-50].然而LiMn y Fe1-y PO4类材料的电化学稳定性并不尽如人意,绝大部分的报道中将该问题归结于Mn离子的Jahn-Teller效应[51].然而这似乎并不是影响该类材料性能的唯一因素,其内部的机理有待于进一步探究.为此,Huang等[52]曾利用磁性检测手段研究过MnPO4的稳定性,Yamada等[53]围绕Jahn-Teller效应问题进行过相关的探讨,Liu等[50]对LiMn y Fe1-y PO4材料的反铁磁性也进行过研究.Mauger等[47]从磁交换作用的角度对此类材料进行了探讨,提出了一些新颖的观点.他们发现材料脱锂形成的Mn y Fe1-y PO4在y较大时会出现反铁磁有序[图7(d)、(e)],这可能是不完全脱锂造成的.他们认为y=0.6是Mn的最高浓度,在低自旋态下,不需要Mn3+的自旋跃迁就可以完成化学反应.如果Mn浓度y增加超过这个极限,由脱锂过程产生的额外的Mn3+必须经历一个低自旋态的转变,这种转变将影响材料的性能,最终引起锂的不完全脱嵌. ...
3
... 在LiMO2类材料中,通过离子掺杂形成的LiNi1-2x Co x Mn x O2类材料因优异的性能而受到广泛的关注,此类材料中不同种类的过渡金属离子对该化合物的稳定性和电化学活性起着重要的作用.一般认为,Ni是电化学活性物质,Mn提供结构稳定性,Co促进锂离子和镍离子在各自晶格位上的有序排列[19].然而实际情况下,由于Ni离子的半径和Li离子的半径相似,在脱锂过程中,Ni往往会迁移至Li空位,不仅影响Li离子的扩散,还会引起容量的衰减[19].Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20].磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+.当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的.Mohanty团队[54]对该问题也进行了相似的研究.研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨. ...
... [54](a) temperature dependences of magnetic susceptibilities of LiNi y Mn y Co1-2y O2; (b) reciprocal susceptibilities and their fit to Curie-Weiss law (solid lines)[20]; (c) temperature dependences of reciprocal susceptibility of LiNi0.45Mn0.45Co0.1O2 synthesized at various temperatures and their fit to Curie-Weiss law (solid lines)[7]; (d) FC/ZFC curves of LiNi1/3Mn1/3Co1/3O2 and Li0.80Ni1/3Mn1/3Co1/3O2; (e) representation of change in microstructure during delithiation and ageing of LiNi1/3Mn1/3Co1/3O2[54]Fig. 83 原位磁性测试
... 在LiMO2类材料中,通过离子掺杂形成的LiNi1-2x Co x Mn x O2类材料因优异的性能而受到广泛的关注,此类材料中不同种类的过渡金属离子对该化合物的稳定性和电化学活性起着重要的作用.一般认为,Ni是电化学活性物质,Mn提供结构稳定性,Co促进锂离子和镍离子在各自晶格位上的有序排列[19].然而实际情况下,由于Ni离子的半径和Li离子的半径相似,在脱锂过程中,Ni往往会迁移至Li空位,不仅影响Li离子的扩散,还会引起容量的衰减[19].Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20].磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+.当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的.Mohanty团队[54]对该问题也进行了相似的研究.研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨. ...
0
1
... 在LiMO2类材料中,通过离子掺杂形成的LiNi1-2x Co x Mn x O2类材料因优异的性能而受到广泛的关注,此类材料中不同种类的过渡金属离子对该化合物的稳定性和电化学活性起着重要的作用.一般认为,Ni是电化学活性物质,Mn提供结构稳定性,Co促进锂离子和镍离子在各自晶格位上的有序排列[19].然而实际情况下,由于Ni离子的半径和Li离子的半径相似,在脱锂过程中,Ni往往会迁移至Li空位,不仅影响Li离子的扩散,还会引起容量的衰减[19].Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20].磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+.当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的.Mohanty团队[54]对该问题也进行了相似的研究.研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨. ...
1
... 在LiMO2类材料中,通过离子掺杂形成的LiNi1-2x Co x Mn x O2类材料因优异的性能而受到广泛的关注,此类材料中不同种类的过渡金属离子对该化合物的稳定性和电化学活性起着重要的作用.一般认为,Ni是电化学活性物质,Mn提供结构稳定性,Co促进锂离子和镍离子在各自晶格位上的有序排列[19].然而实际情况下,由于Ni离子的半径和Li离子的半径相似,在脱锂过程中,Ni往往会迁移至Li空位,不仅影响Li离子的扩散,还会引起容量的衰减[19].Whittingham教授是运用磁性研究LiNi1-2x Co x Mn x O2类材料的先驱,曾对LiNi y Mn y Co1-2y O2(y=0.5、0.45、0.4或1/3)的磁性进行过详细的分析表征[图8(a)~(c)][7, 20].磁性测试的结果表明LiNi1-2x Co x Mn x O2脱锂过程中Ni2+氧化为Ni3+,又进一步氧化为Ni4+.当0.3的Li脱嵌后,材料的磁有序结构发生了部分破坏,这是参与磁交换作用的Ni离子被优先氧化所导致的.Mohanty团队[54]对该问题也进行了相似的研究.研究者发现随着脱锂的进行,材料中的Ni逐渐进入Li层,并发生了部分尖晶石转变,破坏了材料的电化学性能[图8(d)、(e)],此外Pan等[55-57]对于LiNi1-2x Co x Mn x O2类材料的磁性结构以及Ni/Li混合问题也进行过报道,Goodenough教授[58]的工作中利用磁性测试的手段对LiMn1.5Ni0.5O4材料中的Mn3+含量也有过探讨. ...
... [61];(c) Gershinsky团队的原位电池;(d) FeSb2 恒流循环时的循环曲线(黑色)及300 K下对应的原位磁性曲线(蓝色)[64](a) in situ battery diagram of Würschum team; (b) cyclic curve of LiCoO2 electrodes during galvanostatic cycling and corresponding in situ magnetic moment[61]; (c) in situ battery diagram of Gershinsky team; (d) FeSb2 ’s cyclic curve during galvanostatic cycling(black) and corresponding in situ magnetic moment at 300 K (blue)[64]Fig. 9
... [61]; (c) in situ battery diagram of Gershinsky team; (d) FeSb2 ’s cyclic curve during galvanostatic cycling(black) and corresponding in situ magnetic moment at 300 K (blue)[64]Fig. 9
... [64](a) in situ battery diagram of Würschum team; (b) cyclic curve of LiCoO2 electrodes during galvanostatic cycling and corresponding in situ magnetic moment[61]; (c) in situ battery diagram of Gershinsky team; (d) FeSb2 ’s cyclic curve during galvanostatic cycling(black) and corresponding in situ magnetic moment at 300 K (blue)[64]Fig. 9
... [65](a) operando magnetometry in an Fe3O4/Li cell as a function of electrochemical cycling under an applied magnetic field of 3 T; (b) schematic of spin-polarized density of states at surface of ferromagnetic metal grains (before and after discharge); (c) formation of a space charge zone in surface capacitance model for extra lithium storage[65]Fig. 11
... [66](a) schematic of theoretical electron transfer in polymer films; (b) operando magnetic monitoring on a CoO1-x /Co LIB as a function of CV scanning at an applied magnetic field of 3 T; (c) magnified view of dotted area[66]Fig. 12
(a) variation of operando magnetic responses with Co content in Co/CoO films; (b) variation of operando magnetic responses with thinkness of Co/CoO films[79]Fig. 13
(a) variation of operando magnetic responses with Co content in Co/CoO films; (b) variation of operando magnetic responses with thinkness of Co/CoO films[79]Fig. 13
... [79](a) variation of operando magnetic responses with Co content in Co/CoO films; (b) variation of operando magnetic responses with thinkness of Co/CoO films[79]Fig. 13
... [82];(c) 在3 T的外加磁场下,FeSe2 的电化学充放电曲线及其对应的可逆原位磁响应[85](a) cyclic curves and operando magnetometry of FeS2 sodium ion battery; (b) M-H curves of FeS2 electrodes after discharge to 0.01 V in SIBs and LIBs at 300 K[82]; (c) electrochemical charge-discharge profiles of FeSe2 and corresponding reversible in situ magnetic response at an applied magnetic field of 3 T[85]Fig. 144 总结与展望
... [82]; (c) electrochemical charge-discharge profiles of FeSe2 and corresponding reversible in situ magnetic response at an applied magnetic field of 3 T[85]Fig. 144 总结与展望
... [85](a) cyclic curves and operando magnetometry of FeS2 sodium ion battery; (b) M-H curves of FeS2 electrodes after discharge to 0.01 V in SIBs and LIBs at 300 K[82]; (c) electrochemical charge-discharge profiles of FeSe2 and corresponding reversible in situ magnetic response at an applied magnetic field of 3 T[85]Fig. 144 总结与展望