储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2921-2932.doi: 10.19799/j.cnki.2095-4239.2022.0181

• 创刊十周年专刊 • 上一篇    下一篇

锂离子电池负极材料TiNb2O7 的研究进展

贡淑雅1,2(), 王跃2, 李萌2, 邱景义2(), 王洪1(), 文越华2, 徐斌1   

  1. 1.北京化工大学有机无机复合材料国家重点实验室,材料电化学过程与技术北京市重点实验室,北京 100029
    2.防化研究院,先进化学蓄电技术与材料北京市重点实验室,北京 100191
  • 收稿日期:2022-03-31 修回日期:2022-05-10 出版日期:2022-09-05 发布日期:2022-08-30
  • 通讯作者: 邱景义,王洪 E-mail:sygong77@163.com;qiujingyi1202@163.com;wanghong@mail.buct.edu.cn
  • 作者简介:贡淑雅(1997—),女,硕士研究生,研究方向:铌钛氧化物负极材料的制备及改性,E-mail:sygong77@163.com

Research progress on TiNb2O7 anodes for lithium-ion batteries

Shuya GONG1,2(), Yue WANG2, Meng LI2, Jingyi QIU2(), Hong WANG1(), Yuehua WEN2, Bin XU1   

  1. 1.State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
    2.Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China
  • Received:2022-03-31 Revised:2022-05-10 Online:2022-09-05 Published:2022-08-30
  • Contact: Jingyi QIU, Hong WANG E-mail:sygong77@163.com;qiujingyi1202@163.com;wanghong@mail.buct.edu.cn

摘要:

锂离子电池具有能量密度高、自放电率低、使用温度范围广及循环寿命长等优点,在便携式电子设备、电动汽车和储能等领域得到广泛应用。TiNb2O7具有较高理论比容量(388 mAh/g),在充放电过程中体积形变较小,且在快速充电时可以避免锂枝晶的生成,使电池具有更好的安全性和更短的充电时间,是很有潜力的锂离子电池负极材料之一。但是,TiNb2O7的电子电导率和离子电导率较低,阻碍了其推广应用。本文作者通过对近期相关研究的探讨,结合国内外在TiNb2O7负极材料制备方面的最新研究进展,综述了TiNb2O7的结构、制备方法及改性策略,对其晶体结构及嵌锂机制进行讨论;同时介绍了高温固相法、溶胶凝胶法、静电纺丝法、溶剂热法及模板法等几种TiNb2O7的制备方法,分别介绍了纳米化、掺杂、引入氧空位及添加导电涂层等四个改性方法及其对TiNb2O7电化学性能的改善效果。综述分析表明,纳米化可以缩短锂离子的扩散路径,掺杂以及氧空位的引入可以改变TiNb2O7结构,复合电极可以改善其导电性,不同的改性方法可以有效地提高电极材料的倍率及循环性能,有望使其在高功率储能器件中得到良好应用。

关键词: 锂离子电池, 负极材料, TiNb2O7, 纳米化, 掺杂, 复合电极

Abstract:

Owing to their high energy density, low self-discharge rate, wide operating temperature range, and long cycle life, lithium-ion batteries are widely used in portable electronic equipment, electric vehicles, and energy storage. TiNb2O7 exhibits a much larger theoretical capacity (388 mAh/g). In the charging-discharging process, the volume change is small, and the generation of lithium dendrite can be avoided in the rapid charging process so that the battery has better safety and shorter charging time. Although TiNb2O7 is one of the most potential anode materials for lithium-ion batteries, its low electronic and ionic conductivities hinder its widespread application. TNO's structural characteristics, preparation methods, and modification strategies are discussed in this paper. The crystal structures and the mechanism of rapid lithium conduction are explained. Furthermore, several methods and their advantages for TNO preparation are introduced, including solid-state reaction, sol-gel, electrospinning, solvothermal, and template methods. In addition, the effects of nano, doping, defect, and composite on electron and charge conductivities, as well as the electrochemical performance of TNO, are emphatically analyzed. Nanocrystallization can shorten the diffusion path of lithium ions, the doping and introduction of oxygen vacancy can change the TiNb2O7 structure, the composite electrode can improve its conductivity, and different modification methods can effectively improve the rate performance and cycle stability of the electrode material, which is expected to make it a good application in high-power energy storage devices.

Key words: Li-ion battery, anode materials, TiNb2O7 material, nanocrystallization, doping, combination electrode

中图分类号: