[1] CELESTE A REISS, KHARCHENKO A, GATESHKI M. On the use of laboratory X-ray diffraction equipment for pair distribution function (PDF) studies[J]. Zeitschrift für Kristallographie Crystalline Materials, 2012, 227:257-261.
[2] YAMADA A, IWANE N, HARADA Y, et al. Lithium iron borates as high-capacity battery electrodes[J]. Adv. Mater., 2010, 22:3583-3587.
[3] YU X Q, HE Y, SUN J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential[J]. Electrochem. Commun., 2009, 11:791-794.
[4] CHUPAS P J, CHAPMAN K W, KURTZ C, et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments[J]. J. Appl. Crystallogr., 2008, 41:822-824.
[5] 梁敬魁. 粉末衍射法测定晶体结构(第二版)[M]. 北京:科学出版社, 2011. LIANG Jingkui. Determination of crystal structures by powder diffraction method (2nd Edition)[M]. Beijing:Science Press, 2011.
[6] 郑振环, 李强. X射线多晶衍射数据Rietveld精修及GSAS软件入门[M]. 北京:中国建材工业出版社, 2016. ZHENG Zhenhuan, LI Qiang. Rietveld refinement of X-ray polycrystalline diffraction data and introduction of GSAS software[M]. Beijing:China Buliding Materials Press, 2016.
[7] MACGLASHAN G S, ANDREEV Y G, BRUCE P G. Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6[J]. Nature, 1999, 398:792-794.
[8] WANG L, XU H, YAN N, et al. Exploring Brønsted acids confined in the 10-ring channels of the zeolite ferrierite[J]. CrystEngComm., 2018, 20:699-702.
[9] GORELIK T E, SCHMIDT M U, KOLB U,et al. Total-scattering pair-distribution function of organic material from powder electron diffraction data[J]. Microsc. Microanal, 2015, 21:459-471.
[10] BLIDBERG A, GUSTAFSSON T, TENGSTEDT C,et al. Monitoring LixFeSO4F (x=1, 0.5, 0) phase distributions in operando to determine reaction homogeneity in porous battery electrodes[J]. Chem. Mater., 2017, 29:7159-7169.
[11] SCHERF L M, HATTENDORFF J, BUCHBERGER I, et al. Electrochemical synthesis of the allotrope allo-Ge and investigations on its use as an anode material[J]. J. Mater. Chem. A, 2017, 5:11179-11187.
[12] RENMAN V, HU S, ERIKSSON R, et al. Ni3Sb4O6F6 and its electrochemical behavior toward lithium-A combination of conversion and alloying reactions[J]. Chem. Mater., 2016, 28:6520-6527.
[13] TOBY B H. R factors in Rietveld analysis:How good is good enough?[J]. Powder Diffr., 2006, 21:67-70.
[14] LEE E S, NAM K W, HU E, et al. Influence of cation ordering and lattice distortion on the charge-Discharge behavior of LiMn1.5Ni0.5O4 spinel between 50 and 20 V[J]. Chem. Mater., 2012, 24:3610-3620.
[15] BAK S M, SHADIKE Z, LIN R, et al. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research[J]. NPG Asia Materials, 2018:563-580.
[16] 王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2):327-344. WANG Qiyu, CHU Geng, ZHANG Jienan, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell[J]. Energy Storage Science and Technology, 2018, 7(2):327-344.
[17] 张杰男. 高电压钴酸锂的失效分析与改性研究[D]. 北京:中国科学院物理研究所, 2018. ZHANG Jienan. Failure analysis and modification research of high voltage LiCoO3[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2018.
[18] NAM K W, BAK S M, HU E, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2013, 23:1047-1063.
[19] MOHANTY D, KALNAUS S, MEISNER R A, et al. Structural transformation of a lithium-rich Li12Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. J. Power Sources, 2013, 229:239-248.
[20] LERICHE J B, HAMELET S, SHU J, et al. An electrochemical cell for operando study of lithium batteries using synchrotron radiation[J]. J. Electrochem. Soc., 2010, 157:A606-A610.
[21] ROBERTS M R, MADSEN A, NICKLIN C, et al. Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries[J]. J. Phys. Chem. C, 2014, 118:6548-6557.
[22] WANG X J, CHEN H Y, YU X Q, et al. A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4[J]. Chem. Commun., 2011, 47:7170-7172.
[23] LI Y, XU R, REN Y, et al. Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction[J]. Nano Energy, 2016, 19:522-531.
[24] GAO J, SHI S, XIAO R, LI H. Synthesis and ionic transport mechanisms of α-LiAlO2[J]. Solid State Ionics, 2016, 286:122-134.
[25] LIU Q, GAO M R, LIU Y, et al. Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy X-ray scattering[J]. Nano Lett., 2016, 16:715-720.
[26] CHEN J, BAI J, CHEN H, et al. In situ hydrothermal synthesis of LiFePO4 studied by synchrotron X-ray diffraction[J]. The Journal of Physical Chemistry Letters, 2011, 2:1874-1878.
[27] CRAVILLON J, SCHRÖDER C A, BUX H, et al. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy[J]. CrystEngComm., 2012, 14:492-498.
[28] 高健, 吕迎春, 李泓. 锂电池基础科学问题(Ⅲ)-相图与相变[J]. 储能科学与技术, 2013, 2(3):250-266. GAO Jian, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (Ⅲ)-Phase transition and phase diagram[J].Energy Storage Science and Technology, 2013, 2(3):250-266.
[29] LUO C, MARTIN M. Stability and defect structure of spinels Li1+xMn2-xO4-δ:In situ investigations on the stability field of the spinel phase[J]. J. Mater. Sci., 2007, 42:1955-1964.
[30] DELACOURT C, POIZOT P, TARASCON J M, et al. The existence of a temperature-driven solid solution in LixFePO4 for 0≤ x ≤ 1[J]. Nat. Mater., 2005, 4:254-260.
[31] 高健, 吕迎春, 李泓. 锂电池基础科学问题(Ⅳ)-相图与相变(2)[J]. 储能科学与技术, 2013, 2(4):383-401. GAO Jian, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (IV)-Phase transition and phase diagram (2)[J]. Energy Storage Science and Technology, 2013, 2(4):383-401.
[32] LYU Y, HU E, XIAO D, et al. Correlations between transition metal chemistry, local structure and global structure in Li2Ru0.5Mn0.5O3 investigated in a wide voltage window[J]. Chemistry of Materials, 2017:9053-9065.
[33] LYU Y, ZHAO N, HU E, et al. Probing reversible multielectron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 10-48V[J]. Chemistry of Materials, 2015, 27:5238-5252.
[34] SU N, LYU Y, GU R, GUO B. Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries[J]. J. Alloys Compd., 2018, 741:398-403.
[35] GIBOT P, CASAS-CABANAS M, LAFFONT L, et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4[J]. Nat. Mater., 2008, 7:741-747.
[36] OMENYA F, MILLER J K, FANG J, et al. Single-phase lithiation and delithiation of simferite compounds Li(Mg,Mn,Fe)PO4[J]. Chem. Mater., 2014, 26:6206-6212.
[37] ORIKASA Y, MAEDA T, KOYAMA Y, et al. Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition[J]. J. Am. Chem. Soc., 2013, 135:5497-5500.
[38] ZHOU Y N, YUE J L, HU E, et al. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6:doi:10.1002/aenm.201600597.
[39] ORIKASA Y, MAEDA T, KOYAMA Y, et al. Transient phase change in two phase reaction between LiFePO4 and FePO4 under battery operation[J]. Chem. Mater., 2013, 25:1032-1039.
[40] LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344:doi:10.1126/science. 1252817.
[41] BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi08Co015Al005O2 cathode materials[J]. Chem. Mater., 2013, 25:337-351.>0.4Mn0.4O2 Cathode Material for Li-Ion Batteries in a Voltage Range of 1.0–4.8 V[J]. Chemistry of Materials, 27 (2015) 5238-5252.
[34] N. Su, Y. Lyu, R. Gu, B. Guo, Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries[J]. J. Alloys Compd., 741 (2018) 398-403.
[35] P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon, C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO(4) [J]. Nat. Mater., 7 (2008) 741-747.
[36] F. Omenya, J.K. Miller, J. Fang, B. Wen, R. Zhang, Q. Wang, N.A. Chernova, M.S. Whittingham, Single-Phase Lithiation and Delithiation of Simferite Compounds Li(Mg,Mn,Fe)PO4[J]. Chem. Mater., 26 (2014) 6206-6212.
[37] Y. Orikasa, T. Maeda, Y. Koyama, et al. Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition[J]. J. Am. Chem. Soc., 135 (2013) 5497-5500.
[38] ZHOU Y N, YUE J L, HU E, et al, High‐Rate Charging induced intermediate phases and structural changes of layer‐structured cathode for lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6: 1600597.
[39] ORIKASA Y, MAEDA T, KOYAMA Y, et al. Transient phase change in two phase reaction between LiFePO4 and FePO4 under battery operation[J]. Chem. Mater., 2013, 25: 1032-1039.
[40] LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344: 1252817.
[41] BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chem. Mater., 2013, 25: 337-351. |