储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 872-886.doi: 10.19799/j.cnki.2095-4239.2021.0133
闫琦1,2(), 兰元其1,3(), 姚文娇1(), 唐永炳1,2,3()
收稿日期:
2021-03-31
修回日期:
2021-04-15
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
姚文娇,唐永炳
E-mail:qi.yan@siat.ac.cn;yq.lan@siat.ac.cn;wj.yao@siat.ac.cn;tangyb@siat.ac.cn
作者简介:
闫琦(1996—),女,硕士研究生,主要从事钠离子电池正极材料的研究,E-mail:基金资助:
Qi YAN1,2(), Yuanqi LAN1,3(), Wenjiao YAO1(), Yongbing TANG1,2,3()
Received:
2021-03-31
Revised:
2021-04-15
Online:
2021-05-05
Published:
2021-04-30
Contact:
Wenjiao YAO,Yongbing TANG
E-mail:qi.yan@siat.ac.cn;yq.lan@siat.ac.cn;wj.yao@siat.ac.cn;tangyb@siat.ac.cn
摘要:
二次离子电池作为诸多储能方式中的一种,具有循环性好、服役寿命长、安全性高、使用方便等优点,已广泛应用于便携式电子设备、电动汽车等领域。然而,随着锂、钴等资源的短缺以及可再生清洁能源的快速发展,亟需发展高效、低成本且环保的新型二次离子电池技术,但其发展受限于缺乏优异的正极材料。相比于其他二次离子电池正极材料,聚阴离子化合物具有种类丰富、结构多样、工作电压可调、循环稳定性好等优点,是发展低成本环保二次离子电池的理想正极材料。本文根据聚阴离子的种类,将其相应正极材料系统分为磷酸盐类、硫酸盐类、其他单一聚阴离子类和混合聚阴离子类,并以LiFePO4、Na3V2(PO4)3、NaVPO4F、Na2Fe2(SO4)3、KFeSO4F、Li2FeSiO4等化合物为代表详细介绍了各类正极材料的晶体结构、电化学性能及储能机理。重点综述了各类聚阴离子型正极材料的研究进展,简要概述了对材料进行包覆、掺杂、纳米化等改性措施取得的研究成果。最后对聚阴离子型正极材料发展过程中的瓶颈(电子电导率低的问题)进行了论述,并提出了相应的解决策略。
中图分类号:
闫琦, 兰元其, 姚文娇, 唐永炳. 聚阴离子型二次离子电池正极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 872-886.
Qi YAN, Yuanqi LAN, Wenjiao YAO, Yongbing TANG. Recent development of polyanionic cathodes for second ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 872-886.
1 | JI B, HE H, YAO W, et al. Recent advances and perspectives on calcium-ion storage: Key materials and devices[J]. Advanced Materials, 2021, 33(2): doi: 10.1002/adma.202005501. |
2 | ZHANG L J, WANG H T, ZHANG X, et al. A review of emerging dual-ion batteries: Fundamentals and recent advances[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010958. |
3 | 李泓. 锂离子电池基础科学问题(XV)——总结和展望[J]. 储能科学与技术, 2015, 4(3): 306-317. |
LI H. Fundamental scientific aspects of lithium ion batteries (XV)——Summary and outlook[J]. Energy Storage Science and Technology, 2015, 4(3): 306-317. | |
4 | ZHOU X, LIU Q, JIANG C, et al. Strategies towards low-cost dual-ion batteries with high performance[J]. Angewandte Chemie, 2020, 59(10): 3802-3832. |
5 | NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18: 252-264. |
6 | JIN T, LI H, ZHU K, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemial Society Review, 2020, 4: 2342-2377. |
7 | PADHI A K, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144: doi: 10.1149/1.1837571. |
8 | WANG J, SUN X. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energy Environment Science, 2012, 5: 5163-5185. |
9 | ANDERSSON A S, KALSKA B, HAGGSTROM L, et al. Lithium extraction/insertion in LiFePO4: An X-ray diffraction and Mössbauer spectroscopy study[J]. Solid State Ionics, 2000, 130: 41-52. |
10 | KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193. |
11 | CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-128. |
12 | 王甲泰, 赵段, 马莲花, 等. 锂离子电池正极材料磷酸铁锂的研究进展[J]. 无机盐工业, 2020, 52(4): 18-22. |
WANG J T, ZHAO D, MA L H, et al. Research progress of LiFePO4 cathode materials for Li-ion battery[J]. Inorganic Chemicals Industry, 2020, 52(4): 18-22. | |
13 | SUSANTYOKO R A, ALKINDI T S, KANAGARAJ A B, et al. Performance optimization of freestanding MWCNT-LiFePO4 sheets as cathodes for improved specific capacity of lithium-ion batteries[J]. RSC Advances, 2018, 8(30): 16566-16573. |
14 | HERLE P S, ELLIS B, COOMBS N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Materials, 2004, 3(3): 147-152. |
15 | MA Z P, FAN Y Q, SHAO G J, et al. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2937-2943. |
16 | OKADA S, SAWA S, YOSHINO A. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries[J]. Journal of Power Sources, 2011, 97: 430-432. |
17 | HAUTIER G, JAIN A, ONG S P, et al. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations[J]. Chemistry of Materials, 2011, 23(15): 3495-3508. |
18 | ZHU C B, SONG K P, VAN AKEN P A, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2014, 14(4): 2175-2180. |
19 | ZHANG X H, RUI X H, CHEN D, et al. Na3V2(PO4)3: An advanced cathode for sodium-ion batteries[J]. Nanoscale, 2019, 11(6): 2556-2576. |
20 | LI H, JIN T, CHEN X, et al. Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode[J]. Advanced Energy Materials, 2018, 8: doi:10.1002/aenm.20 1801418. |
21 | WANG J, WANG Y, SEO D H, et al. A high-energy NASICON-type cathode material for Na-ion batteries[J]. Advanced Energy Materials, 2020, 10: doi: 10.1002/adma.201903968. |
22 | ZHOU W D, XUE L G, LYU X, et al. NaxMV(PO4)3 (M=Mn, Fe, Ni) structure and properties for sodium extraction[J]. Nano Letters, 2016, 16(12): 7836-7841. |
23 | GOVER R K B, BRYAN A, BURNS P, et al. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3[J]. Solid State Ionics, 2006, 177(17/18): 1495-1500. |
24 | LIU Z G, HU Y Y, DUNSTAN M T, et al. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3[J]. Chemistry of Materials, 2014, 26(8): 2513-2521. |
25 | BIANCHINI M, BRISSET N, FAUTH F, et al. Na3V2(PO4)2F3 revisited: A high-resolution diffraction study[J]. Chemistry of Materials, 2014, 26(14): 4238-4247. |
26 | SONG W, JI X, WU Z, et al. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries[J]. Journal of Power Sources, 2014, 256: 258-263. |
27 | BIANCHINI M, FAUTH F, BRISSET N, et al. Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction[J]. Chemistry of Materials, 2015, 27(8): 3009-3020. |
28 | YI H, LING M, XU W, et al. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties[J]. Nano Energy, 2018, 47: 340-352. |
29 | 易红明, 吕志强, 张华民, 等. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369. |
YI H M, LV Z Q, ZHANG H M, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. | |
30 | LING M, LI F, YI H, et al. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6: 24201-24209. |
31 | GABELICA-ROBERT M. The pyrophosphate NaFeP2O7: A cage structure [J]. Journal of Solid State Chemistry, 1982, 45: 389-395. |
32 | BARPANDA P, YE T, NISHIMURA S I, et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries[J]. Electrochemical Communication, 2012, 24: 116-119. |
33 | KIM H, PARK I, SEO D H, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: Combined first principles calculations and experimental study[J]. Journal of the American Chemical Society, 2012, 134(25): 10369-10372. |
34 | LIM S Y, KIM H, CHUNG J, et al. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery[J]. PNAS, 2014, 111(2): 599-604. |
35 | HE G, HUQ A, KAN W H, et al. Β-NaVOPO4 obtained by a low-temperature synthesis process: A new 3.3 V cathode for sodium-ion batteries[J]. Chemistry of Materials, 2016, 28(5): 1503-1512. |
36 | PARK Y U, SEO D H, KIM H, et al. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1-xPO4)2F1+2x (0≤x≤1): Combined first-principles and experimental sudy[J]. Advanced Functianl Materials, 2014, 24: 4603-4614. |
37 | BARPANDA P, LIU G D, LING C D, et al. Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries[J]. Chemistry of Materials, 2013, 25(17): 3480-3487. |
38 | 曹鑫鑫, 周江, 潘安强, 等. 钠离子电池磷酸盐正极材料研究进展[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905018. |
CAO X X, ZHOU J, PAN A Q, et al. Recent advances in phosphate cathode materials for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905018. | |
39 | WU X, ZHONG G, YANG Y. Sol-gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction[J]. Journal of Power Sources, 2016, 327: 666-674. |
40 | CHIHARA K, KATOGI A, KUBOTA K, et al. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries[J]. Chemiacal Communications, 2017, 53: 5208-5211. |
41 | BARPANDA P, OYAMA G, NISHIMURA S, et al. A 3.8 V earth-abundant sodium battery electrode[J]. Nature Communications, 2014, 5: doi:10.1038/ncomms5358. |
42 | NISHIMURA S I, SUZUKI Y, LU J C, et al. High-temperature neutron and X-ray diffraction study of fast sodium transport in alluaudite-type sodium iron sulfate[J]. Chemistry of Materials, 2016, 28(7): 2393-2399. |
43 | CHEN M, CORTIE D, HU Z, et al. A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201800944. |
44 | JUNGERS T, MAHMOUD A, MALHERBE C, et al. Sodium iron sulfate alluaudite solid solution for Na-ion batteries: Moving towards stoichiometric Na2Fe2(SO4)3[J]. Journal of Materials Chemistry A, 2019, 7: 8226-3823. |
45 | ARAUJO R B, CHAKRABORTY S, BARPANDA P, et al. Na2M2(SO4)3(M=Fe, Mn, Co and Ni): Towards high-voltage sodium battery applications[J]. Physical Chemistry Chemical Physics, 2016, 18(14): 9658-9665. |
46 | WONG L L, CHEN H M, ADAMS S. Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na(2+δ)Fe(2-δ/2)(SO4)3[J]. Physica Chemistry Chemical Physics, 2015, 17: 9186-9193. |
47 | DWIBEDI D, ARAUJO R B, CHAKRABORTY S, et al. Na2.44Mn1.79(SO4)3: A new member of the alluaudite family of insertion compounds for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(36): 18564-18571. |
48 | WEI S, MORTEMARD B, OYAMA G, et al. Synthesis and electrochemistry of Na2.5(Fe1-yMny)1.75(SO4)3 solid solutions for Na-ion batteries[J]. Chemelectrochemistry, 2016, 3: 209-213. |
49 | 马璨, 吕迎春, 李泓. 锂离子电池基础科学问题(Ⅶ)——正极材料[J]. 储能科学与技术, 2014, 3(1): 53-65. |
MA C, LYU Y C, LI H. Fundamental scientific aspects of lithium batteries (Ⅶ)—Positive electrode materials[J]. Energy Storage Science and Technology, 2014, 3(1): 53-65. | |
50 | RECHAM N, CHOTARD J N, DUPONT L, et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries[J]. Nature Materials, 2010, 9(1): 68-74. |
51 | BARPANDA P, ATI M, MELOT B C, et al. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure[J]. Nature Materials, 2011, 10: 772-779. |
52 | RECHAM N, ROUSSE G, SOUGRATI M T, et al. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes[J]. Chemistry of Materials, 2012, 24(22): 4363-4370. |
53 | DONG J, LIAO J, HE X, et al. Graphene encircled KFeSO4F cathode composite for high energy density potassium-ion batteries[J]. Chemical Communications, 2020, 56: 10050-10053. |
54 | KIM H, SEO D H, BIANCHINI M, et al. A new strategy for high-voltage cathodes for K-ion batteries: Stoichiometric KVPO4F[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201801591. |
55 | DRISCOLL L L, KENDRICK E, KNIGHT K S, et al. Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O(M=Mn, Fe, Co and Ni): Stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x(M=Mn, Co and Ni) through selenate incorporation[J]. Journal of Solid State Chemistry, 2018, 258: 64-71. |
56 | SUN M L, ROUSSE G, ABAKUMOV A M, et al. An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries[J]. Journal of the American Chemical Society, 2014, 136(36): 12658-12666. |
57 | DING Y L, WEN Y R, VAN AKEN P A, et al. Jarosite nanosheets fabricated via room-temperature synthesis as cathode materials for high-rate lithium ion batteries[J]. Chemistry of Materials, 2015, 27(8): 3143-3149. |
58 | DOMPABLO A M, ARMAND M, TARASCON J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochemistry Communications, 2006, 8: 1292-1298. |
59 | LARSSON P, AHUJA R, NYTEN A, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4[J]. Electrochemistry Communications, 2006, 8: 797-800. |
60 | ARMSTRONG A R, KUGANATHAN N, ISLAM M S, et al. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries[J]. Journal of the American Chemical Society, 2011, 133(33): 13031-13035. |
61 | MASESE T, TASSEL C, ORIKASA Y, et al. Crystal structural changes and charge compensation mechanism during two lithium extraction/insertion between Li2FeSiO4 and FeSiO4[J]. The Journal of Physical Chemistry C, 2015, 119(19): 10206-10211. |
62 | LOFTAGER S, GARCÍA-LASTRA J M, VEGGE T. A density functional theory study of the ionic and electronic transport mechanisms in LiFeBO3 battery electrodes[J]. The Journal of Physical Chemistry C, 2016, 120(33): 18355-18364. |
63 | DONG Y Z, ZHAO Y M, SHI Z D, et al. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material[J]. Electrochimica Acta, 2008, 53(5): 2339-2345. |
64 | YAO W J, ARMSTRONG A R, ZHOU X, et al. An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox[J]. Nature Communicaitons, 2019, 10: doi: 10.1038/s41467-019-11077-0. |
65 | YAO W J, SOUGRATI M T, HOANG K, et al. Reinvestigation of Na2Fe2(C2O4)3·2H2O: An iron-based positive electrode for secondary batteries[J]. Chemistry of Materials, 2017, 29(21): 9095-9101. |
66 | HE H Y, YAO W J, TUNMEE S, et al. An iron-based polyanionic cathode for potassium storage with high capacity and excellent cycling stability[J]. Journal of Materials Chemistry A, 2020, 8(18): 9128-9136. |
67 | CAI J H, LAN Y Q, HE H Y, et al. Synthesis, structure, and electrochemical properties of some cobalt oxalates[J]. Inorganic Chemistry, 2020, 59(23): 16936-16943. |
68 | HE X L, ZHANG X Y, JI B F, et al. Tilting and twisting in a novel perovzalate, K3NaMn(C2O4)3[J]. Chemical Communications, 2021, 57(20): 2567-2570. |
69 | WU N Z, ZHOU X L, KIADKHUNTHOD P, et al. K-ion battery cathode design utilising trigonal prismatic ligand field[J]. Advanced Materials, 2021, doi: 10.1002/adma.202101788. |
70 | YAO W J, CLARK L, XIA M J, et al. Diverse family of layered frustrated magnets with tailorable interlayer interactions[J]. Chemistry of Materials, 2017, 29(16): 6616-6620. |
71 | JI B, YAO W, ZHENG Y, et al. A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15044-y. |
72 | BEN YAHIA H, ESSEHLI R, AMIN R, et al. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2[J]. Journal of Power Sources, 2018, 382: 144-151. |
73 | CHEN H L, HAO Q, ZIVKOVIC O, et al. Sidorenkite (Na3MnPO4CO3): A new intercalation cathode material for Na-ion batteries[J]. Chemistry of Materials, 2013, 25(14): 2777-2786. |
74 | LU J C, NISHIMURA S I, YAMADA A. Polyanionic solid-solution cathodes for rechargeable batteries[J]. Chemistry of Materials, 2017, 29(8): 3597-3602. |
75 | LAN Y Q, YAO W J, HE X L, et al. Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage[J]. Angewandte Chemie, 2020, 59: 9255-9262. |
76 | SONG T, YAO W, KIADKHUNTHOD P, et al. A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage[J]. Angewandte Chemie, 2020, 59(2): 740-745. |
77 | WANG W K, JI B F, YAO W J, et al. A novel low-cost and environment-friendly cathode with large channels and high structure stability for potassium-ion storage[J]. Science China Materials, 2021, 64(5): 1047-1057. |
78 | SARAVANAN K, MASON C W, RUDOLA A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries[J]. Advanced Energy Materials, 2013, 3(4): 444-450. |
79 | SULTANA I, RAHMAN M M, MATETI S, et al. Approaching reactive KFePO4 phase for potassium storage by adopting an advanced design strategy[J]. Batteries & Supercaps, 2020, 3(5): 450-455. |
80 | LIN T C, YAN Y, KING S C, et al. Fast-charging cathodes from polymer-templated mesoporous LiVPO4F[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33775-33784. |
81 | DU J, JIAO L, WU Q, et al. Synthesis and characterization of Li2FeP2O7/C nanocomposites as cathode materials for Li-ion batteries[J]. Electrochimica Acta, 2013, 103: 219-225. |
82 | PARK W B, HAN S C, PARK C, et al. KVP2O7 as a robust high-energy cathode for potassium-ion batteries: Pinpointed by a full screening of the inorganic registry under specific search conditions[J]. Advanced Energy Materials, 2018, 8(13): doi: 10.1002/aenm.201703099. |
83 | REYNAUD M, ATI M, MELOT B C, et al. Li2Fe(SO4)2 as a 3.83 V positive electrode material[J]. Electrochemistry Communications, 2012, 21: 77-80. |
84 | LI S Y, SONG X S, KUAI X X, et al. A nanoarchitectured Na6Fe5(SO4)8/CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage[J]. Journal of Materials Chemistry A, 2019, 7(24): 14656-14669. |
85 | KIM M, KIM D, LEE W, et al. New class of 3.7 V Fe-based positive electrode materials for Na-ion battery based on cation-disordered polyanion framework[J]. Chemistry of Materials, 2018, 30(18): 6346-6352. |
86 | BARPANDA P, OYAMA G, LING C D, et al. Kröhnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries[J]. Chemistry of Materials, 2014, 26(3): 1297-1299. |
87 | WANG F X, LIU S S, JIANG Q K, et al. K2Fe3(SO4)3(OH)2(H2O)2: A new high-performance hydroxysulfate cathode material for alkali metal ion batteries[J]. Journal of Power Sources, 2020, 452: doi: 10.1016/j.jpowsour.2020.227835. |
88 | PRAMANIK A, BARDFORD A, LEE S, et al. Na2Fe(C2O4)(HPO4): A promising new oxalate-phosphate based mixed polyanionic cathode for Li/Na ion batteries[J]. Journal of Physics Materials, 2021, 4: doi: 10.1088/2515-7639/abe5f9. |
89 | 潘雯丽, 关文浩, 姜银珠. 聚阴离子型钠离子电池正极材料的研究进展[J]. 物理化学学报, 2020, 36(5): 63-74. |
WENLI P, WENHAO G, YINZHU J. Research advances in polyanion-type cathodes for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 63-74. | |
90 | PAN Q G, ZHENG Y P, TONG Z P, et al. Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202103052. |
91 | YANG R, ZHANG F, LEI X, et al. Pseudocapacitive Ti-doped niobium pentoxide nanoflake structure design for a fast kinetics anode toward a high-performance Mg-ion-based dual-ion battery[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47539-47547. |
92 | YANG K, LIU Q, ZHENG Y, et al. Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries[J]. Angewandte Chemie, 2021, 60(12): 6326-6332. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[3] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[4] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[5] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[6] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[7] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[8] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[9] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[10] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[11] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
[12] | 田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312. |
[13] | 季洪祥, 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.8.1—2021.9.30)[J]. 储能科学与技术, 2021, 10(6): 2411-2427. |
[14] | 田丰, 季洪祥, 田孟羽, 乔荣涵, 岑官骏, 申晓宇, 武怿达, 詹元杰, 金周, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.6.1—2021.7.31)[J]. 储能科学与技术, 2021, 10(5): 1854-1868. |
[15] | 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.4.1—2021.5.31)[J]. 储能科学与技术, 2021, 10(4): 1237-1252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||