储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1551-1562.doi: 10.19799/j.cnki.2095-4239.2021.0530
收稿日期:
2021-10-14
修回日期:
2021-11-17
出版日期:
2022-05-05
发布日期:
2022-05-07
通讯作者:
潘锋
E-mail:lishuankui@pkusz.edu.cn;panfeng@ @pkusz.edu.cn
作者简介:
李拴魁(1986—),男,副研究员,主要研究方向为热电转换材料,E-mail:lishuankui@pkusz.edu.cn;
基金资助:
Shuankui LI1(), Yuan LIN2, Feng PAN1()
Received:
2021-10-14
Revised:
2021-11-17
Online:
2022-05-05
Published:
2022-05-07
Contact:
Feng PAN
E-mail:lishuankui@pkusz.edu.cn;panfeng@ @pkusz.edu.cn
摘要:
能量的消耗、转换与利用伴随着人类社会的各种生产及生活活动。随着社会的持续发展,世界范围内的能源危机与环境污染问题对能源的高效合理利用及存储技术提出了更高要求。热能是最常见及最重要的能量形式,深入分析目前热能的主要来源、利用、存储方式及特点,促进热能的合理高效利用对当代社会的可持续发展至关重要。本文主要从热能来源形式及利用现状、热能的存储技术、热能的主要转换路径及技术三方面出发,对当前热能的存储利用技术及现状进行了综述。发掘新型绿色可持续发展的热能资源,结合各种热能的特点,采用不同的转换及存储技术,实现高效绿色利用的最终目标;同时开发新的热能存储材料及技术,如热化学储热等,结合新型高效的热能转化技术,使得热能的利用朝着更加科学合理的方向发展。
中图分类号:
李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562.
Shuankui LI, Yuan LIN, Feng PAN. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562.
表2
常见显热储热材料的性能对比[27-28]"
类型 | 储热材料 | 工作温度/℃ | 平均密度/(kg/m3) | 平均热导率/[W/(m·K] | 平均比热容/[kJ/(kg·℃)] | 储能密度/(kWh/m3) | 蓄热成本/[$/(kWh)] |
---|---|---|---|---|---|---|---|
固体材料 | 混凝土 | 200~400 | 2200 | 1.5 | 0.85 | 100 | 1 |
氯化钠 | 200~500 | 2160 | 7.0 | 0.85 | 150 | 2 | |
铸铁 | 200~400 | 7200 | 37 | 0.56 | 160 | 32 | |
耐火硅砖 | 200~700 | 1820 | 1.5 | 1.00 | 150 | 7.0 | |
耐火镁砖 | 200~1200 | 3000 | 7.0 | 1.15 | 600 | 6.0 | |
液体材料 | 矿物油 | 200~300 | 770 | 0.12 | 2.6 | 55 | 4.2 |
硅油 | 300~400 | 900 | 0.1 | 2.1 | 52 | 80 | |
硝酸盐 | 265~565 | 1870 | 0.52 | 250 | 250 | 3.7 | |
液态钠 | 270~530 | 850 | 71 | 80 | 80 | 21 |
表3
常见相变蓄热材料的性能对比"
类型 | 储热材料 | 相变温度/℃ | 相变潜热/(J/g) | 材料密度/(g/cm³) | 材料储能密度/(kWh/m3) |
---|---|---|---|---|---|
有机类 | 聚乙烯 | 125.0 | 210~230 | 0.962 | 56.1~61.4 |
新戊二醇 | 44.1 | 116.5 | 1.06 | 34.3 | |
石蜡(CnH2n+2) | 75.9 | 170~269 | 约0.9 | 37.7~67.0 | |
硬脂酸(18) | 69.4 | 199 | 0.9 | 49.75 | |
熔融盐类 | NaNO3/KNO3(70/30) | 220~260 | 145 | 约2.2 | 88.6 |
KNO3/Mg(NO3)(20/10) | 195.68 | 59.2 | 约1.6 | 26.3 | |
合金类 | 56Si-44Mg | 946 | 757 | 1.90 | 399.5 |
49Al-51Si | 579 | 515 | 2.25 | 321.9 | |
78.55Ga-21.45In | 15.7 | 69.7 | 6.197 | 120.0 | |
60Sn-40Bi | 138~170 | 44.4 | 8.12 | 100.1 |
1 | HERRMANN U, KEARNEY D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 145-152. |
2 | DUNN R I, HEARPS P J, WRIGHT M N. Molten-salt power towers: Newly commercial concentrating solar storage[J]. Proceedings of the IEEE, 2012, 100(2): 504-515. |
3 | 左远志, 丁静, 杨晓西. 蓄热技术在聚焦式太阳能热发电系统中的应用现状[J]. 化工进展, 2006, 25(9): 995-1000, 1030. |
ZUO Y Z, DING J, YANG X X. Current status of thermal energy storage technologies used for concentrating solar power systems[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 995-1000, 1030. | |
4 | MÜLLER D, KNOLL C, GRAVOGL G, et al. Medium-temperature thermochemical energy storage with transition metal ammoniates-A systematic material comparison[J]. Applied Energy, 2021, 285: doi: 10.1016/j.apenergy.2021.116470. |
5 | KHAMLICH I, ZENG K, FLAMANT G, et al. Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi:10.1016/j.rser. 2020.110583. |
6 | WANG S, ASSELINEAU C A, WANG Y, et al. Performance enhancement of cavity receivers with spillage skirts and secondary reflectors in concentrated solar dish and tower systems[J]. Solar Energy, 2020, 208: 708-727. |
7 | 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312-321. |
LIN W J, LIU Z M, WANG W L, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312-321. | |
8 | 张金华, 魏伟. 我国的地热资源分布特征及其利用[J]. 中国国土资源经济, 2011, 24(8): 23-24, 28, 54. |
ZHANG J H, WEI W. Discussion on distribution characteristics and utilization of geothermal resources in China[J]. Natural Resource Economics of China, 2011, 24(8): 23-24, 28, 54. | |
9 | 胡连营. 地源热泵技术讲座(一)地源热泵技术及其发展概况[J]. 可再生能源, 2008, 26(1): 115-117. |
10 | 朱守义. 地热供暖优势分析[J]. 科技致富向导, 2011(9): 184. |
11 | ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758. |
12 | KONING A J, ROCHMAN D. Towards sustainable nuclear energy: Putting nuclear physics to work[J]. Annals of Nuclear Energy, 2008, 35(11): 2024-2030. |
13 | MENYAH K, WOLDE-RUFAEL Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US[J]. Energy Policy, 2010, 38(6): 2911-2915. |
14 | JOUHARA H, KHORDEHGAH N, ALMAHMOUD S, et al. Waste heat recovery technologies and applications[J]. Thermal Science and Engineering Progress, 2018, 6: 268-289. |
15 | FORMAN C, MURITALA I K, PARDEMANN R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568-1579. |
16 | JOUHARA H, OLABI A G. Editorial: Industrial waste heat recovery[J]. Energy, 2018, 160: 1-2. |
17 | HUNG T C, SHAI T Y, WANG S K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667. |
18 | HASNAIN S M. Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques[J]. Energy Conversion and Management, 1998, 39(11): 1127-1138. |
19 | BAUER T, PFLEGER N, BREIDENBACH N, et al. Material aspects of Solar Salt for sensible heat storage[J]. Applied Energy, 2013, 111: 1114-1119. |
20 | DINCER I, DOST S, LI X G. Performance analyses of sensible heat storage systems for thermal applications[J]. International Journal of Energy Research, 1997, 21(12): 1157-1171. |
21 | FERNANDEZ A I, MARTÍNEZ M, SEGARRA M, et al. Selection of materials with potential in sensible thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1723-1729. |
22 | LUZZI A, LOVEGROVE K, FILIPPI E, et al. Techno-economic analysis of a 10 m We solar thermal power plant using ammonia-based thermochemical energy storage[J]. Solar Energy, 1999, 66(2): 91-101. |
23 | 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245. |
WU J, LONG X F. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245. | |
24 | ACEM Z, LOPEZ J, PALOMO DEL BARRIO E. KNO3/NaNO3-Graphite materials for thermal energy storage at high temperature: Part I. Elaboration methods and thermal properties[J]. Applied Thermal Engineering, 2010, 30(13): 1580-1585. |
25 | LI G. Sensible heat thermal storage energy and exergy performance evaluations[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 897-923. |
26 | WU G, ZENG M, PENG L L, et al. China׳s new energy development: Status, constraints and reforms[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 885-896. |
27 | GIL A, MEDRANO M, MARTORELL I, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55. |
28 | LAING D, STEINMANN W D, TAMME R, et al. Solid media thermal storage for parabolic trough power plants[J]. Solar Energy, 2006, 80(10): 1283-1289. |
29 | SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. |
30 | PACHECO J E, SHOWALTER S K, KOLB W J. Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 153-159. |
31 | FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615. |
32 | THIRUGNANAM C, KARTHIKEYAN S, KALAIMURUGAN K. Study of phase change materials and its application in solar cooker[J]. Materials Today: Proceedings, 2020, 33: 2890-2896. |
33 | ZHOU Y C, WU S Q, MA Y, et al. Recent advances in organic/composite phase change materials for energy storage[J]. ES Energy & Environment, 2020, 9: 28-40. |
34 | AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. |
35 | ORÓ E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. |
36 | ZHANG S, NIU J L. Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1038-1048. |
37 | LI M, WU Z S, KAO H T, et al. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material[J]. Energy Conversion and Management, 2011, 52(11): 3275-3281. |
38 | 戴远哲, 唐波, 李旭飞, 等. 相变蓄热材料研究进展[J]. 化学通报, 2019, 82(8): 717-724, 730. |
DAI Y Z, TANG B, LI X F, et al. Research progress in phase change heat storage materials[J]. Chemistry, 2019, 82(8): 717-724, 730. | |
39 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. |
40 | ZHANG S, FENG D L, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: doi: 10.1016/j.rser.2020.110127. |
41 | CARABALLO A, GALÁN-CASADO S, CABALLERO Á, et al. Molten salts for sensible thermal energy storage: A review and an energy performance analysis[J]. Energies, 2021, 14(4): 1197. |
42 | MANTHA D, WANG T, REDDY R G. Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3 ternary system[J]. Journal of Phase Equilibria and Diffusion, 2012, 33(2): 110-114. |
43 | XU F, WANG J T, ZHU X M, et al. Thermodynamic modeling and experimental verification of a NaNO3-KNO3-LiNO3-Ca(NO3)2 system for solar thermal energy storage[J]. New Journal of Chemistry, 2017, 41(18): 10376-10382. |
44 | FARAJ K, KHALED M, FARAJ J, et al. Phase change material thermal energy storage systems for cooling applications in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi:10.1016/j.rser.2019.109579. |
45 | SIMPSON R E, FONS P, KOLOBOV A V, et al. Interfacial phase-change memory[J]. Nature Nanotechnology, 2011, 6: 501-505. |
46 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. |
47 | SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51: 365-372. |
48 | XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
49 | GEORGE M, PANDEY A K, ABD RAHIM N, et al. A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability[J]. Solar Energy, 2020, 204: 448-458. |
50 | LI M, WU Z S, TAN J M. Heat storage properties of the cement mortar incorporated with composite phase change material[J]. Applied Energy, 2013, 103: 393-399. |
51 | BARAN G, SARI A. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system[J]. Energy Conversion and Management, 2003, 44(20): 3227-3246. |
52 | WEN R L, ZHANG X G, HUANG Y T, et al. Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings[J]. Energy and Buildings, 2017, 139: 197-204. |
53 | PÉREZ-LOMBARD L, ORTIZ J, POUT C. A review on buildings energy consumption information[J]. Energy and Buildings, 2008, 40(3): 394-398. |
54 | DINCER I. On thermal energy storage systems and applications in buildings[J]. Energy and Buildings, 2002, 34(4): 377-388. |
55 | DELGADO M, LÁZARO A, MAZO J, et al. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 253-273. |
56 | YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31. |
57 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. |
58 | JITHEESH E V, JOSEPH M, SAJITH V. Comparison of metal oxide and composite phase change material based nanofluids as coolants in mini channel heat sink[J]. International Communications in Heat and Mass Transfer, 2021, 127: doi:10.1016/j.icheatmasstransfer. 2021.105541. |
59 | Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage[J]. Sustainability, 2018, 10(1): 191. |
60 | PENG X Y, BAJAJ I, YAO M, et al. Solid-gas thermochemical energy storage strategies for concentrating solar power: Optimization and system analysis[J]. Energy Conversion and Management, 2021, 245: doi:10.1016/j.enconman.2021.114636. |
61 | BEEKMAN M, MORELLI D T, NOLAS G S. Better thermoelectrics through glass-like crystals[J]. Nature Materials, 2015, 14: 1182-1185. |
62 | LIAO B L, CHEN G. Nanocomposites for thermoelectrics and thermal engineering[J]. MRS Bulletin, 2015, 40(9): 746-752. |
63 | CHEN W Y, SHI X L, ZOU J, et al. Wearable fiber-based thermoelectrics from materials to applications[J]. Nano Energy, 2021, 81: 105684. |
64 | CARRILLO A J, GONZÁLEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816. |
65 | SHARMA A, CHEN C R, MURTY V V S, et al. Solar cooker with latent heat storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1599-1605. |
66 | TRITT T M, BÖTTNER H, CHEN L D. Thermoelectrics: direct solar thermal energy conversion[J]. MRS Bulletin, 2008, 33(4): 366-368. |
67 | BERETTA D, NEOPHYTOU N, HODGES J M, et al. Thermoelectrics: From history, a window to the future[J]. Materials Science and Engineering: Reports, 2019, 138: 100501. |
68 | LI S K, CHU M H, ZHU W M, et al. Atomic-scale tuning of oxygen-doped Bi2Te2.7Se0.3 to simultaneously enhance the Seebeck coefficient and electrical conductivity[J]. Nanoscale, 2020, 12(3): 1580-1588. |
69 | LI S K, HUANG Z Y, WANG R, et al. Highly distorted grain boundary with an enhanced carrier/phonon segregation effect facilitates high-performance thermoelectric materials[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51018-51027. |
70 | LI S K, WANG R, ZHU W M, et al. Achieving high thermoelectric performance by introducing 3D atomically thin conductive framework in porous Bi2Te2.7Se0.3-carbon nanotube hybrids[J]. Advanced Electronic Materials, 2020, 6(8): 2000292. |
71 | ZHAO L D, DRAVID V P, KANATZIDIS M G. The panoscopic approach to high performance thermoelectrics[J]. Energy Environ Sci, 2014, 7(1): 251-268. |
72 | SHI X L, CHEN W Y, ZHANG T, et al. Fiber-based thermoelectrics for solid, portable, and wearable electronics[J]. Energy & Environmental Science, 2021, 14(2): 729-764. |
73 | VINING C B. An inconvenient truth about thermoelectrics[J]. Nature Materials, 2009, 8(2): 83-85. |
74 | ZHAO D L, TAN G. A review of thermoelectric cooling: Materials, modeling and applications[J]. Applied Thermal Engineering, 2014, 66(1/2): 15-24. |
75 | LIU W S, HU J Z, ZHANG S M, et al. New trends, strategies and opportunities in thermoelectric materials: A perspective[J]. Materials Today Physics, 2017, 1: 50-60. |
76 | SHI X, CHEN L. Thermoelectric materials step up[J]. Nature Materials, 2016, 15: 691-692. |
77 | LI S K, HUANG Z Y, WANG R, et al. Precision grain boundary engineering in commercial Bi2Te2.7Se0.3 thermoelectric materials towards high performance[J]. Journal of Materials Chemistry A, 2021, 9(18): 11442-11449. |
78 | LI S K, CHU M H, ZHU W M, et al. Atomic-scale tuning of oxygen-doped Bi2Te2.7Se0.3 to simultaneously enhance the Seebeck coefficient and electrical conductivity[J]. Nanoscale, 2020, 12(3): 1580-1588. |
79 | LI S K, LIU Y D, LIU F S, et al. Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach[J]. Nano Energy, 2018, 49: 257-266. |
80 | ZHENG J C. Recent advances on thermoelectric materials[J]. Frontiers of Physics in China, 2008, 3(3): 269-279. |
81 | LI C C, JIANG F X, LIU C C, et al. Present and future thermoelectric materials toward wearable energy harvesting[J]. Applied Materials Today, 2019, 15: 543-557. |
[1] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[2] | 吴田, 林闽城, 海浩, 孙海渔, 温兆银, 马福元. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. |
[3] | 肖哲熙, 鲁峰, 林贤清, 张晨曦, 白浩隆, 于春辉, 何姿颖, 姜海容, 魏飞. 气固流化床硅氧碳负极材料的宏量制备[J]. 储能科学与技术, 2022, 11(6): 1739-1748. |
[4] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[5] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[6] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[7] | 孙颖, 赵钦, 尹博思, 马天翼. PTCDI//δ-MnO2 水系铵离子电池性能研究[J]. 储能科学与技术, 2022, 11(4): 1110-1120. |
[8] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[9] | 杜江龙, 林伊婷, 杨雯棋, 练成, 刘洪来. 模拟仿真在锂离子电池热安全设计中的应用[J]. 储能科学与技术, 2022, 11(3): 866-877. |
[10] | 安汉文, 莫生凯, 李梦璐, 王家钧. 同步辐射多模态成像技术在储能电池领域的研究进展[J]. 储能科学与技术, 2022, 11(3): 834-851. |
[11] | 甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865. |
[12] | 冯晓晗, 孙杰, 何健豪, 魏义华, 周成冈, 孙睿敏. 磷酸铁锂正极材料改性研究进展[J]. 储能科学与技术, 2022, 11(2): 467-486. |
[13] | 杨家豪, 施兆平, 王意波, 葛君杰, 刘长鹏, 邢巍. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890. |
[14] | 王凯, 侯朝霞, 李思瑶, 屈晨滢, 王悦, 孔佑健. 可拉伸全固态超级电容器的研究进展[J]. 储能科学与技术, 2021, 10(3): 887-895. |
[15] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||