储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 643-651.doi: 10.19799/j.cnki.2095-4239.2023.0523

• 储能系统与工程 • 上一篇    下一篇

有机液体载氢储运技术研究进展及应用场景

邢承治1,2(), 赵明1,2, 尚超1,2, 张思婧1,2, 张自力1,2, 刘杨1,2()   

  1. 1.中化学建设投资集团科技产业发展有限公司
    2.中化学建设投资集团有限公司,北京 102308
  • 收稿日期:2023-08-04 修回日期:2023-09-12 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 刘杨 E-mail:xchzhi@163.com;angusliu76@163.com
  • 作者简介:邢承治(1974—),男,高级工程师,研究方向氢能制储运加用的技术研究及开发应用,E-mail:xchzhi@163.com

Research progress and application scenarios of storage and transportation technology with liquid organic hydrogen carrier

Chengzhi XING1,2(), Ming ZHAO1,2, Chao SHANG1,2, Sijing ZHANG1,2, Zili ZHANG1,2, Yang LIU1,2()   

  1. 1.China National Chemical Construction Investment Group Science and Technology Industrial Development Co. Ltd.
    2.China National Chemical Construction Investment Group Co. Ltd. , Beijing 102308, China
  • Received:2023-08-04 Revised:2023-09-12 Online:2024-02-28 Published:2024-03-01
  • Contact: Yang LIU E-mail:xchzhi@163.com;angusliu76@163.com

摘要:

在“双碳”战略目标背景下,氢能产业在深度和广度上都获得了高速发展,上游制氢资源丰富,下游用氢市场广阔,由于跨地区氢能供需失衡,中游氢能储运已经成为氢能产业链的短板,严重制约了氢能产业的进一步发展。在这种情况下,有机液体载氢(LOHC)储运技术应运而生,以一种化学储氢方式完美克服了高压气态储氢、低温液态及固态等物理储氢方式的缺陷。与其他氢能储运技术相比,LOHC储运技术在安全、成本、技术、效率等方面具有突出的优势,有望补齐氢能储运的短板,完善氢能产业链。本文对三种主要LOHC储运技术,从工艺原理、储氢载体、综合成本、科研发展等方面进行比较分析。认为甲苯、N-乙基咔唑和二苄基甲苯等三种LOHC储运技术已完成了理论研究、实验验证及中试放大等工作,技术趋于完善,具备了工业化推广应用的条件。在未来展望角度上,对包括大型氢能储运基地和分布式脱氢加氢一体化站在内的两种LOHC储运技术的新型应用场景进行了分析,并梳理了目前LOHC储运技术研究面临的问题和研究方向,并提出了希望和建议。

关键词: 氢能, 有机液体载氢(LOHC), 储运, 应用场景

Abstract:

Under the "dual-carbon" strategic goal, the hydrogen energy industry has undergone rapid and extensive development. The upstream hydrogen production resources are abundant, and the downstream hydrogen market is expansive. However, the cross-regional imbalance in hydrogen energy supply and demand has led to a critical bottleneck in midstream hydrogen energy storage and transportation, hindering the further progress of the hydrogen energy industry. In response to this challenge, liquid organic hydrogen-carrying (LOHC) storage and transportation technology was developed. This method, employing a chemical hydrogen storage approach, perfectly overcomes the defects of physical hydrogen storage methods, such as high-pressure gas hydrogen storage and low-temperature liquid and metal solid methods. Compared with other hydrogen energy storage and transportation technologies, LOHC has outstanding advantages in safety, cost, technology, efficiency, and other aspects. It is expected to address the shortcomings in hydrogen energy storage and transportation, thus enhancing the hydrogen energy industry chain. Herein, three main LOHC storage and transportation technologies, namely methylcyclohexane, N-ethylcarbazole, and dibenzyltoluene, are compared and analyzed from the aspects of process principle, hydrogen storage carrier, comprehensive cost, and research and development. The analysis suggests that these three LOHC technologies, having completed theoretical research, experimental verification, and pilot scale, are poised for industrial popularization and application. In the future perspective, the new application scenarios of two LOHC storage and transportation technologies, including large-scale hydrogen energy storage and transportation bases and distributed dehydrogenation and hydrogenation integrated stations, are analyzed. The challenges and research directions of LOHC storage and transportation technology are summarized while providing hopeful suggestions for the future.

Key words: hydrogen energy, liquid organic hydrogen carrier (LOHC), storage and transportation, application scenarios

中图分类号: