1 |
WANG Q K, SHEN J N, HE Y J, et al. Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization[J]. Chinese Physics B, 2020, 29(6): 068201. DOI: 10.1088/1674-1056/ab90f8.
|
2 |
DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890. DOI: 10.1149/1.1836921.
|
3 |
昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. DOI: 10.19799/j.cnki.2095-4239.2023.0296.
|
|
ZAN W D, ZHANG R, DING F. Development and application of electrochemical models for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. DOI: 10.19799/j.cnki.2095-4239.2023.0296.
|
4 |
WANG Y, WU H, SUN L Z, et al. Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes[J]. European Journal of Mechanics—A/Solids, 2021, 87: 104230. DOI: 10.1016/j.euromechsol.2021.104230.
|
5 |
LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. DOI: 10.1149/1945-7111/aba96f.
|
6 |
KEIL J, JOSSEN A. Electrochemical modeling of linear and nonlinear aging of lithium-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(11): 110535. DOI: 10.1149/1945-7111/aba44f.
|
7 |
LI W H, CAO D C, JÖST D, et al. Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries[J]. Applied Energy, 2020, 269: 115104. DOI: 10.1016/j.apenergy.2020.115104.
|
8 |
LAUE V, SCHMIDT O, DREGER H, et al. Model-based uncertainty quantification for the product properties of lithium-ion batteries[J]. Energy Technology, 2020, 8(2): 1900201. DOI: 10.1002/ente.201900201.
|
9 |
RABISSI C, INNOCENTI A, SORDI G, et al. A comprehensive physical-based sensitivity analysis of the electrochemical impedance response of lithium-ion batteries[J]. Energy Technology, 2021, 9(3): 2000986. DOI: 10.1002/ente.202000986.
|
10 |
蒲小雪, 杨少波, 庹爱雪, 等. 关于动力电池设计参数在不同倍率下的放电容量的敏感度仿真分析[J]. 储能科学与技术, 2023, 12(3): 951-959. DOI: 10.19799/j.cnki.2095-4239.2022.0681.
|
|
PU X X, YANG S B, TUO A X, et al. Simulation analysis on sensitivity of discharge capacity on design parameters of a battery[J]. Energy Storage Science and Technology, 2023, 12(3): 951-959. DOI: 10.19799/j.cnki.2095-4239.2022.0681.
|
11 |
HUTZENLAUB T, THIELE S, PAUST N, et al. Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode[J]. Electrochimica Acta, 2014, 115: 131-139. DOI: 10.1016/j.electacta.2013.10.103.
|
12 |
LU X K, BERTEI A, FINEGAN D P, et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nature Communications, 2020, 11(1): 2079. DOI: 10.1038/s41467-020-15811-x.
|
13 |
TAKAGISHI Y, YAMANAKA T, YAMAUE T. Quasi-3D modeling of Li-ion batteries based on single 2D image[J]. SN Applied Sciences, 2021, 3(6): 633. DOI: 10.1007/s42452-021-04581-w.
|
14 |
RUCCI A, NGANDJONG A C, PRIMO E N, et al. Tracking variabilities in the simulation of Lithium Ion Battery electrode fabrication and its impact on electrochemical performance[J]. Electrochimica Acta, 2019, 312: 168-178. DOI: 10.1016/j.electacta.2019.04.110.
|
15 |
FANG R Q, GE H, WANG Z H, et al. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity[J]. Journal of the Electrochemical Society, 2020, 167(13): 130513. DOI: 10.1149/1945-7111/abb83a.
|
16 |
TALEGHANI S T, MARCOS B, ZAGHIB K, et al. A study on the effect of porosity and particles size distribution on Li-ion battery performance[J]. Journal of the Electrochemical Society, 2017, 164(11): E3179-E3189. DOI: 10.1149/2.0211711jes.
|
17 |
KIRK T L, PLEASE C P, JON CHAPMAN S. Physical modelling of the slow voltage relaxation phenomenon in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(6): 060554. DOI: 10.1149/1945-7111/ac0bf7.
|
18 |
RÖDER F, SONNTAG S, SCHRÖDER D, et al. Simulating the impact of particle size distribution on the performance of graphite electrodes in lithium-ion batteries[J]. Energy Technology, 2016, 4(12): 1588-1597. DOI: 10.1002/ente.201600232.
|
19 |
KIRK T L, EVANS J, PLEASE C P, et al. Modeling electrode heterogeneity in lithium-ion batteries: Unimodal and bimodal particle-size distributions[J]. SIAM Journal on Applied Mathematics, 2022, 82(2): 625-653. DOI: 10.1137/20m1344305s.
|
20 |
MALIFARGE S, DELOBEL B, DELACOURT C. Guidelines for the analysis of data from the potentiostatic intermittent titration technique on battery electrodes[J]. Journal of the Electrochemical Society, 2017, 164(14): A3925-A3932. DOI: 10.1149/2.1591714jes.
|
21 |
CHEN C H, BROSA PLANELLA F, O'REGAN K, et al. Development of experimental techniques for parameterization of multi-scale lithium-ion battery models[J]. Journal of the Electrochemical Society, 2020, 167(8): 080534. DOI: 10.1149/1945-7111/ab9050.
|