储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3491-3503.doi: 10.19799/j.cnki.2095-4239.2024.0396
乔亚军1(), 任怡茂2, 谭子健1, 张袆柔2, 吴伟雄2()
收稿日期:
2024-05-06
修回日期:
2024-05-31
出版日期:
2024-10-28
发布日期:
2024-10-30
通讯作者:
吴伟雄
E-mail:20288367@qq.com;weixiongwu@jnu.edu.cn
作者简介:
乔亚军(1982—),男,硕士研究生,研究方向为高电压技术和电力设备状态监测技术,E-mail:20288367@qq.com;
基金资助:
Yajun QIAO1(), Yimao REN2, Zijian TAN1, Huirou ZHANG2, Weixiong WU2()
Received:
2024-05-06
Revised:
2024-05-31
Online:
2024-10-28
Published:
2024-10-30
Contact:
Weixiong WU
E-mail:20288367@qq.com;weixiongwu@jnu.edu.cn
摘要:
锂离子电池内短路诱因复杂,为深入研究内短路引起的电池失效问题须构建合适的精细化仿真模型。本工作以NCM/石墨电池为研究对象,围绕电池内短路失效机理,基于电化学-热耦合物理场,建立了考虑热失控放热副反应的三维单层电芯内短路模型,探究了热失控触发边界,并从内外部特征讨论了单层电芯内短路-热失控的演变过程。首先利用Arrhenius公式得到内短路触发的四种放热副反应产热量与反应速率,探究对电池温升影响最大的副反应类别,结果表明内短路过程放热副反应中负极与电解液反应总热量最大。进一步分析单层电芯内四种典型内短路形式的热失控触发特性,综合考虑组分材料导电性和导热性,得到铝-阳极内短路危险程度最高,其短路电阻值与热失控触发时间呈现正相关趋势,且临界短路电阻的高温热点区域面积值约为30 mm2。模拟结果获得了四种形式内短路临界短路电阻值,并揭示了单层电芯内短路-热失控触发时内部锂离子浓度和温度分布的空间演变规律,相关结果可为研究内短路失效机制和设计安全锂离子电池提供理论指导。
中图分类号:
乔亚军, 任怡茂, 谭子健, 张袆柔, 吴伟雄. 锂离子电池单层电芯内短路建模与热失控触发特性[J]. 储能科学与技术, 2024, 13(10): 3491-3503.
Yajun QIAO, Yimao REN, Zijian TAN, Huirou ZHANG, Weixiong WU. Modeling internal short circuit and thermal runaway triggers in single-layer lithium-ion battery cells[J]. Energy Storage Science and Technology, 2024, 13(10): 3491-3503.
表2
电化学及热力学参数[9, 34-38]"
参数 | 铜 | 负极 | 隔膜 | 正极 | 铝 |
---|---|---|---|---|---|
密度ρ/(kg/m3) | 8960 | 1200 | 525 | 2860 | 2770 |
比热容cp /[W/(m·K)] | 385 | 1437.4 | 2050 | 1150 | 897 |
热导率k/[J/(kg·K)] | 395 | 0.4 | 0.5 | 0.4 | 240 |
最大锂浓度cs_max/(mol/m3) | — | 31507 | — | 49000 | — |
初始电解质盐浓度ce,0/(mol/m3) | — | 2000 | 2000 | 2000 | — |
电荷转移系数αa,αc | — | 0.5,0.5 | — | 0.5,0.5 | — |
固相锂扩散率Ds/(m2/s) | — | 3.9×10-14 | — | 1×10-13 | — |
电解质扩散率De/(m2/s) | — | 1.5×10-11 | 1.5×10-11 | 1.5×10-11 | — |
电极固相体积分数εs | — | 0.471 | — | 0.297 | — |
电解质相体积分数εe | — | 0.357 | — | 0.444 | — |
电极颗粒半径rs/μm | — | 14.75 | — | 10 | — |
扭曲布鲁格曼系数Brugl | — | 2.5 | 2.15 | 2.98 | — |
法拉第常数F/(c/mol) | 96485 | — | — | — | — |
摩尔气体常数R/[J/(mol·K)] | 8.314 | — | — | — | — |
参考温度Tref/K | 273.15 | — | — | — | — |
固液界面电阻RSEI/(Ω·m2) | — | 0.001 | — | 0.001 | — |
比表面积a/m-1 | — | 3εs/rs | — | 3εs/rs | — |
有效电解质扩散率Deeff/(m2/s) | — | εe1.5De | De | εe1.5De | — |
固相电导率σs/(S/m) | 5.998×107 | 100 | — | 3.8 | 3.774×107 |
液相电导率σe/(S/m) | — | — | σe=f(ce,T)[ | — | — |
有效固相电导率σseff/(S/m) | — | εs1.5σs | σs | εs1.5σs | — |
有效液相电导率σeeff/(S/m) | — | εe1.5σe | σe | εe1.5σe | — |
1 | YONG J Y, RAMACHANDARAMURTHY V K, TAN K M, et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 365-385. DOI: 10.1016/j.rser.2015.04.130. |
2 | CRABTREE G. The coming electric vehicle transformation[J]. Science, 2019, 366(6464): 422-424. DOI: 10.1126/science.aax0704. |
3 | KUMAR R R, ALOK K. Adoption of electric vehicle: A literature review and prospects for sustainability[J]. Journal of Cleaner Production, 2020, 253: 119911. DOI: 10.1016/j.jclepro.2019. 119911. |
4 | REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials, 2020, 13(8): 1884. DOI: 10.3390/ma13081884. |
5 | ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161. DOI: 10.1002/aenm. 201900161. |
6 | KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. DOI: 10.1039/c8ta10513h. |
7 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10. 1016/j.joule.2020.02.010. |
8 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002. |
9 | FENG X, HE X, LU L, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society, 2018, 165(2): A155-A167. DOI: 10.1149/2.0501802jes. |
10 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. DOI: 10.1016/j.ensm.2020.10.020. |
11 | LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027. |
12 | LAI X, JIN C Y, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives[J]. Energy Storage Materials, 2021, 35: 470-499. DOI: 10.1016/j.ensm.2020.11.026. |
13 | LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. DOI: 10.1149/1945-7111/aba96f. |
14 | HUANG S, DU X N, RICHTER M, et al. Understanding Li-ion cell internal short circuit and thermal runaway through small, slow and in situ sensing nail penetration[J]. Journal of the Electrochemical Society, 2020, 167(9): 090526. DOI: 10.1149/1945-7111/ab8878. |
15 | SUN F, MORONI R, DONG K, et al. Study of the mechanisms of internal short circuit in a Li/Li cell by synchrotron X-ray phase contrast tomography[J]. ACS Energy Letters, 2017, 2(1): 94-104. DOI: 10.1021/acsenergylett.6b00589. |
16 | ROSSO M, GOBRON T, BRISSOT C, et al. Onset of dendritic growth in lithium/polymer cells[J]. Journal of Power Sources, 2001, 97: 804-806. DOI: 10.1016/S0378-7753(01)00734-0. |
17 | RAMADASS P, FANG W F, ZHANG Z M. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique[J]. Journal of Power Sources, 2014, 248: 769-776. DOI: 10.1016/j.jpowsour.2013.09.145. |
18 | ZHAO W, LUO G, WANG C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217. DOI: 10.1149/2.1071501jes. |
19 | HUANG L L, LIU L S, LU L G, et al. A review of the internal short circuit mechanism in lithium-ion batteries: Inducement, detection and prevention[J]. International Journal of Energy Research, 2021, 45(11): 15797-15831. DOI: 10.1002/er.6920. |
20 | LIU L S, FENG X N, RAHE C, et al. Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 61: 269-280. DOI: 10.1016/j.jechem.2021.03.025. |
21 | WANG L B, LI J P, CHEN J Y, et al. Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation[J]. Applied Energy, 2023, 351: 121790. DOI: 10.1016/j.apenergy.2023.121790. |
22 | CHEN M B, BAI F F, LIN S L, et al. Performance and safety protection of internal short circuit in lithium-ion battery based on a multilayer electro-thermal coupling model[J]. Applied Thermal Engineering, 2019, 146: 775-784. DOI: 10.1016/j.applthermaleng. 2018.10.011. |
23 | LI Y B, ZHOU Z F, WU W T. Three-dimensional thermal modeling of internal shorting process in a 20Ah lithium-ion polymer battery[J]. Energies, 2020, 13(4): 1013. DOI: 10.3390/en13041013. |
24 | OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. DOI: 10.1016/j.jpowsour.2015.06.087. |
25 | HU X S, LI S B, PENG H E. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-67. DOI:10.1016/j.jpowsour.2011.10.013 |
26 | DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890. DOI: 10.1149/1.1836921. |
27 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. DOI: 10.1149/1.2221597. |
28 | WANG N, CHEN A L, ZHAO W Y, et al. An online temperature estimation for cylindrical lithium-ion batteries based on simplified distribution electrical-thermal model[J]. Journal of Energy Storage, 2022, 55: 105326. DOI: 10.1016/j.est.2022.105326. |
29 | ALKHEDHER M, AL TAHHAN A B, YOUSAF J, et al. Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111172. DOI: 10.1016/j.est.2024.111172. |
30 | XING B B, XIAO F Y, KOROGI Y, et al. Direction-dependent mechanical-electrical-thermal responses of large-format prismatic Li-ion battery under mechanical abuse[J]. Journal of Energy Storage, 2021, 43: 103270. DOI: 10.1016/j.est.2021.103270. |
31 | KONG X D, PLETT G L, SCOTT TRIMBOLI M, et al. Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells[J]. Journal of Energy Storage, 2020, 27: 101085. DOI: 10.1016/j.est.2019.101085. |
32 | FANG W F, RAMADASS P, ZHANG Z M. Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model[J]. Journal of Power Sources, 2014, 248: 1090-1098. DOI: 10.1016/j.jpowsour.2013.10.004. |
33 | LIU C Y, LI H, KONG X B, et al. Modeling analysis of the effect of battery design on internal short circuit hazard in LiNi0. 8Co0. 1Mn0. 1O2/SiOx-graphite lithium ion batteries[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119590. DOI: 10.1016/j.ijheatmasstransfer.2020.119590. |
34 | ZAVALIS T G, BEHM M, LINDBERGH G. Investigation of short-circuit scenarios in a lithium-ion battery cell[J]. Journal of the Electrochemical Society, 2012, 159(6): A848-A859. DOI: 10.1149/2.096206jes. |
35 | AN Z, SHAH K, JIA L, et al. Modeling and analysis of thermal runaway in Li-ion cell[J]. Applied Thermal Engineering, 2019, 160: 113960. DOI: 10.1016/j.applthermaleng.2019.113960. |
36 | LIU Y J, XIA Y, ZHOU Q. Effect of low-temperature aging on the safety performance of lithium-ion pouch cells under mechanical abuse condition: A comprehensive experimental investigation[J]. Energy Storage Materials, 2021, 40: 268-281. DOI: 10.1016/j.ensm.2021.05.022. |
37 | ZHOU M Z, HU L L, CHEN S R, et al. Different mechanical-electrochemical coupled failure mechanism and safety evaluation of lithium-ion pouch cells under dynamic and quasi-static mechanical abuse[J]. Journal of Power Sources, 2021, 497: 229897. DOI: 10.1016/j.jpowsour.2021.229897. |
38 | LI Y D, WANG W W, LIN C, et al. A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression[J]. Energy, 2021, 215: 119050. DOI: 10.1016/j.energy.2020.119050. |
39 | VALO̸EN L O, REIMERS J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2005, 152(5): A882. DOI: 10.1149/1.1872737. |
40 | KONG D P, WANG G Q, PING P, et al. Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions[J]. Applied Thermal Engineering, 2021, 189: 116661. DOI: 10.1016/j.applthermaleng. 2021.116661. |
41 | 贾隆舟, 郑莉莉, 王栋, 等. 高镍三元正极材料锂离子电池的热失控分析[J]. 电池, 2022, 52(1): 58-62. DOI: 10.19535/j.1001-1579.2022.01.014. |
JIA L Z, ZHENG L L, WANG D, et al. Analysis of high nickel ternary cathode materials on thermal runaway of Li-ion battery[J]. Dianchi(Battery Bimonthly), 2022, 52(1): 58-62. DOI: 10.19535/j.1001-1579.2022.01.014. |
[1] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[2] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[3] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[4] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[5] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[6] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[7] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. |
[8] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[9] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[10] | 田成文, 孙丙香, 赵鑫泽, 付智城, 马仕昌, 赵博, 张旭博. 基于数据驱动的锂离子电池快速寿命预测[J]. 储能科学与技术, 2024, 13(9): 3103-3111. |
[11] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. |
[12] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. |
[13] | 孙丙香, 杨鑫, 周兴振, 马仕昌, 王志豪, 张维戈. 基于简化阻抗模型和比较元启发式算法的锂离子电池参数辨识方法[J]. 储能科学与技术, 2024, 13(9): 2952-2962. |
[14] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
[15] | 王志勇, 蔡君瑶, 佘英奇, 钟树林, 潘康华. 氮杂环导电高分子改性锂离子电池石墨负极材料[J]. 储能科学与技术, 2024, 13(8): 2511-2518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||