储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 175-182.doi: 10.19799/j.cnki.2095-4239.2024.0622

• 储能系统与工程 • 上一篇    下一篇

分段供热策略提高氨分解率和能量利用效率的研究

刘斌1(), 康宗耀1, 王欣1, 刘伟2, 庄竣博1, 陈文俊1, 折晓会1()   

  1. 1.石家庄铁道大学机械工程学院,河北 石家庄 050043
    2.河北省科学院能源研究所,河北 石家庄 050081
  • 收稿日期:2024-07-08 修回日期:2024-08-07 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 折晓会 E-mail:liubin@stdu.edu.cn;shexh19@hotmail.com
  • 作者简介:刘斌(1985—),男,博士,副教授,研究方向为氨(氢)储能,E-mail:liubin@stdu.edu.cn
  • 基金资助:
    河北省科技厅战略科技专项(23319904L);河北省科学院基本科研业务费制度试点项目(2024PF02)

Study of a segmented heating strategy to improve ammonia decomposition rate and energy utilization efficiency

Bin LIU1(), Zongyao KANG1, Xin WANG1, Wei LIU2, Junbo ZHUANG1, Wenjun CHEN1, Xiaohui SHE1()   

  1. 1.School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China
    2.Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, Hebei, China
  • Received:2024-07-08 Revised:2024-08-07 Online:2025-01-28 Published:2025-02-25
  • Contact: Xiaohui SHE E-mail:liubin@stdu.edu.cn;shexh19@hotmail.com

摘要:

氨分解制氢在氨氢储能系统中占据关键地位,电加热制氢在催化剂作用下展现出高效灵活性,已成为应用最广泛的方式。为了提高分解器的氨分解率以及能量利用效率,本文提出了一种新的加热策略,即对氨分解器进行分段供热,并基于Temkin-Phyzev反应动力学模型和塞流式反应器模型对氨分解器进行了仿真分析。首先,分析了均匀加热方式下分解器参数,确定反应器内温度及各组分的摩尔分数分布,明晰了影响能量利用效率的因素。其次,对比五种加热覆盖率下氨分解率和能源利用效率,优化最佳配置参数并验证分段供热原理,并分析能源利用效率以验证分段供热的合理性。结果表明,氨分解反应在分解器入口段分解速率较快、所需能量较高。总能量供应不变时,分段供热使氨分解率和能源利用效率显著提高。随着能量供应向前端集中,氨分解效率提高,出口处分解气温度降低。在加热覆盖率小于20%时,氨分解率基本保持不变。本研究对于提高氨分解率和能量利用效率具有重要意义,为氨氢储能技术的发展提供了有价值的见解。

关键词: 氨分解制氢, 分段式供热, 能量利用效率, 氨(氢)储能

Abstract:

Ammonia decomposition for hydrogen production is critical in ammonia-hydrogen energy storage systems. Electrically heated hydrogen production, catalyzed for high efficiency and flexibility, has emerged as the most widely adopted method. This paper proposes a new heating strategy, i.e., segmented heating of the ammonia decomposer, to enhance the ammonia decomposition rate and energy utilization efficiency. The decomposer is subjected to simulation analysis based on the Temkin-Phyzev reaction kinetics and the plug flow reactor models. The parameters of the decomposer under uniform heating are analyzed to determine the temperature distribution and molar fractions of each component within the reactor, thereby clarifying the factors influencing energy utilization efficiency. Compared with the ammonia decomposition rate and energy utilization efficiency across the five heating coverage rates, we optimized the optimal configuration parameters, verified the principle of segment heating, and analyzed the energy utilization efficiency to confirm the rationality of segment heating. The results indicated that the decomposition rate of ammonia decomposition is faster, and the energy requirement is greater in the inlet section of the decomposer. Under a constant total energy supply, segmented heating significantly enhances the ammonia decomposition rate and energy utilization efficiency. The concentration of energy supply at the front end enhances ammonia decomposition efficiency and reduces the discharge gas temperature at the outlet. The rate of ammonia decomposition remains relatively stable when the energy supply segment ratio is less than 20%. This study is crucial for improving the ammonia decomposition rate and energy utilization efficiency, offering significant insights for developing ammonia-hydrogen energy storage technology.

Key words: ammonia decomposition to produce hydrogen, segmented heating, energy utilization efficiency, ammonia (hydrogen) energy storage

中图分类号: