储能科学与技术

• 储能教育 •    

“新工科”背景下储能专业实验教学新模式探索与实践

李巾锭1(), 宋关羽1,5, 樊林浩1,2, 张寿行1, 李斯奇1, 王惟宇1, 尹燕1,2, 凌国维1,3, 潘刚1,4, 焦魁1,2, 王成山1,5()   

  1. 1.天津大学国家储能技术产教融合创新平台,天津 300350
    2.天津大学机械学院,天津 300350
    3.天津大学海洋学院,天津 300072
    4.天津大学智算学部,天津 300350
    5.天津大学自动化学院,天津 300072
  • 收稿日期:2024-10-10 修回日期:2024-10-30
  • 通讯作者: 王成山 E-mail:jinding.li@tju.edu.cn;cswang@tju.edu.cn
  • 作者简介:李巾锭(1990—),女,研究生,工程师,储能人才培养,E-mail:jinding.li@tju.edu.cn
  • 基金资助:
    教育部实验教学和教学实验室建设研究项目(SYJX2024-027);天津市高等学校研究生教育改革重点项目(TJYGZ34);天津市高等学校本科生教育改革重点项目(A231005602);天津大学实验室建设与管理改革项目(LAB2023-03)

Research and Exploration on the Experimental Teaching System for Undergraduate Major of Energy Storage Science and Engineering under the "Emerging Engineering Education"

Jinding LI1(), Guanyu SONG1,5, Linhao FAN1,2, Shouhang ZHANG1, Siqi LI1, Weiyu WANG1, Yan YIN1,2, Guowei LING1,3, Gang PAN1,4, Kui JIAO1,2, Chengshan WANG1,5()   

  1. 1.National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin 300350, China
    2.School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
    3.School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
    4.College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
    5.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2024-10-10 Revised:2024-10-30
  • Contact: Chengshan WANG E-mail:jinding.li@tju.edu.cn;cswang@tju.edu.cn

摘要:

在全球能源转型和“双碳”战略背景下,储能专业人才的培养关乎未来国家能源产业发展和新型储能技术革新。储能作为新兴技术,产业链上中下游人才需求强劲,储能科学与工程专业作为新型交叉学科,肩负培养未来引领储能核心技术突破和产业发展紧缺高层次人才的重任。自2020年以来,我国已有84所高校开设储能科学与工程专业,但各高校对于储能领域人才培养尚处于探索阶段,储能专业实验教学内容及实践育人模式更是需要从0到1的原始创新。储能科学与工程专业涉及电气工程、化学工程、材料科学与工程、能源动力等多学科的知识,如何在实践教学中融会贯通,是储能专业实验教学要面临新的挑战。因此,急需构建一套符合当前产业发展和行业需求的储能专业实验教学体系,加快培养储能领域拔尖创新人才。本文立足天津大学储能科学与工程专业,发挥天津大学“新工科”建设优势,依托天津大学国家储能技术产教融合创新平台优势资源,构建了三层次储能专业实验教学体系,该体系突出学科交叉、科教融汇、产教融合,将多学科知识通过基础类实验、专业类实验、项目式实验、模块式实验、综合性实验进行融会贯通,并在天津大学储能科学与工程专业本科生人才培养中进行实践,取得了良好的育人成效,具有一定的示范推广价值。

关键词: 储能, 实验教学, 新工科

Abstract:

In the context of global energy transition and the strategy of carbon peak and carbon neutrality, the cultivation of energy storage professionals is crucial for ensuring future national energy security industry and advancing new energy storage technology. As an emerging field, energy storage demands a wide range of talent, from foundational expertise to high-level professionals, across its entire industrial chain. As an emerging interdisciplinary field, energy storage science and engineering bears the responsibility of cultivating shortage high-level professionals, equipped to drive advancements in both technology and industry practices. Since 2020, 84 universities in China have established the major of energy storage science and engineering. However, talent cultivation in this field is still under exploration at these universities, posing original innovation to the experimental teaching component. This discipline draws on diverse fields such as chemical engineering, electrical engineering, materials science, management science, and energy and power engineering. Furthermore, effectively integrating these diverse disciplines into practical teaching presents a significant challenge for the education of energy storage science and engineering students. Therefore, in response to the strong demand and rapid evolution of the energy storage industry, there is an urgent need to develop a practical experimental teaching system that aligns with current industrial advancements and meets sectoral requirements, to accelerate cultivating the top-notch innovative talents with interdisciplinary knowledge, superb techniques and practical abilities. Leveraging Tianjin University's strengths in "Emerging Engineering Education " initiatives and capitalizing on the superior resources of the National Industry-Education Platform for Energy Storage (Tianjin University), this paper proposes a three-tiered, four-stage experimental teaching system based on the Energy Storage Science and Engineering major at Tianjin University. This innovative experimental teaching system highlights the interdisciplinary integration, the synergistic fusion of scientific principles and educational practices, and the active collaboration between academia and industry. The system integrates multidisciplinary knowledge through a structured series of basic experiments, specialized experiments, project-based learning initiatives, and comprehensive capstone projects. Through these methods, the program aims not only to improve the quality of talent cultivation but also to demonstrate considerable potential for widely adoption and application across the energy storage field.

Key words: energy storage, experimental teaching, emerging engineering education

中图分类号: