储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1133-1140.doi: 10.19799/j.cnki.2095-4239.2024.1135

• 储能新锐科学家专刊 • 上一篇    下一篇

快速微波合成铂铜合金作为高效氧还原电催化剂

袁程(), 沈迁, 张瑞文, 张世明()   

  1. 上海大学理学院/可持续能源研究院,上海 200444
  • 收稿日期:2024-12-02 修回日期:2024-12-16 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 张世明 E-mail:y18944842989@163.com;smzhang@shu.edu.cn
  • 作者简介:袁程(2000—),男,硕士研究生,研究方向为燃料电池氧还原催化剂,E-mail:y18944842989@163.com
  • 基金资助:
    国家自然科学基金(22272105);上海市自然科学基金(23ZR1423900)

Rapid microwave synthesis of platinum-copper alloy as efficient oxygen reduction electrocatalyst

Cheng YUAN(), Qian SHEN, Ruiwen ZHANG, Shiming ZHANG()   

  1. College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
  • Received:2024-12-02 Revised:2024-12-16 Online:2025-03-28 Published:2025-04-28
  • Contact: Shiming ZHANG E-mail:y18944842989@163.com;smzhang@shu.edu.cn

摘要:

氧还原反应(ORR)动力学迟缓,质子交换膜燃料电池(PEMFC)阴极需要消耗大量的贵金属铂(Pt)。然而,Pt的稀缺性以及商业Pt/C催化剂的高成本、低ORR活性、差稳定性等问题,严重制约了PEMFC的大规模应用。因此,亟需寻找合适策略以开发具有优异活性、高稳定性、低Pt用量的高效实用催化剂。本工作发展了一种快速微波还原的方法,合成了碳负载的铂铜合金纳米颗粒(PtCu/C)催化剂。透射电镜结果显示,PtCu纳米颗粒均匀分布在碳载体表面,其平均粒径约为2.7 nm,纳米颗粒中Pt、Cu均匀分布,形成了两个原子层厚度的富Pt表面结构;X射线衍射证实了PtCu合金的形成;X射线光电子能谱表明Cu向Pt进行了电子转移,产生了电子相互作用。进一步,系统考察了前体混合物中Pt∶Cu摩尔比以及微波反应的温度、时间、功率等对制备催化剂催化活性的影响。电化学测试结果表明,优化的PtCu/C催化剂在0.9 V (vs. RHE)处的质量活性和面积活性分别为0.280 A/mg和0.346 mA/cm2,均优于商业Pt/C催化剂的0.150 A/mg和0.213 mA/cm2,且稳定性进一步提升,PtCu/C催化剂提高的活性和稳定性主要归因于小粒径的PtCu纳米颗粒、合金化以及富Pt表面结构等。

关键词: 快速微波还原, 铂铜合金, 电催化剂, 氧还原反应

Abstract:

The oxygen reduction reaction (ORR) exhibits sluggish kinetics, leading to substantial platinum (Pt) consumption at the cathodes of proton exchange membrane fuel cells (PEMFCs). However, the scarcity of Pt, along with the high cost, low ORR activity, and poor stability of commercial Pt/C catalysts, severely restricts the large-scale application of PEMFCs. Therefore, the development of efficient and practical catalysts with excellent activity, high stability, and reduced Pt usage is critical. Herein, a rapid microwave reduction method was developed to synthesize carbon-supported platinum-copper alloy nanoparticle (PtCu/C) catalysts. Transmission electron microscopy reveals that PtCu nanoparticles are uniformly distributed on the surface of the carbon support with an average particle size of 2.7 nm. Pt and Cu are evenly distributed within the nanoparticles, forming a Pt-rich surface structure with a thickness of two atomic layers. X-ray diffraction confirms the formation of PtCu alloy. X-ray photoelectron spectroscopy indicates electron transfer from Cu to Pt, facilitating electronic interactions. Furthermore, the effects of the Pt∶Cu molar ratio in the precursor mixture, along with the temperature, time, and power of the microwave reaction, on the catalytic activity are systematically investigated. Electrochemical test results suggest that the optimal PtCu/C catalyst exhibits mass and area activities of 0.280 A/mg and 0.346 mA/cm2 at 0.9 V (vs. RHE), respectively, outperforming commercial Pt/C catalyst (0.15 A/mg and 0.213 mA/cm2). Additionally, the PtCu/C catalyst shows enhanced electrochemical stability. The improved activity and stability of the PtCu/C catalyst are mainly attributed to the small PtCu nanoparticle size, alloying effects, and Pt-rich surface structure.

Key words: rapid microwave reduction, platinum-copper alloy, electrocatalyst, oxygen reduction reaction

中图分类号: