1 |
RAHMAN A, FARROK O, HAQUE M M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112279. DOI: 10.1016/j.rser.2022.112279.
|
2 |
李淼, 盖克荣, 周凤颖, 等. 低温燃料电池在汽车工程中的供储能特性分析[J]. 储能科学与技术, 2024, 13(7): 2483-2485. DOI: 10.19799/j.cnki.2095-4239.2024.0556.
|
|
LI M, GAI K R, ZHOU F Y, et al. Analysis of energy supply and storage characteristics of fuel cells in automotive engineering[J]. Energy Storage Science and Technology, 2024, 13(7): 2483-2485. DOI: 10.19799/j.cnki.2095-4239.2024.0556.
|
3 |
TELLEZ-CRUZ M M, ESCORIHUELA J, SOLORZA-FERIA O, et al. Proton exchange membrane fuel cells (PEMFCs): Advances and challenges[J]. Polymers, 2021, 13(18): 3064. DOI: 10.3390/polym13183064.
|
4 |
OlABI A G, WILBERFORCE T, AlANAZI A, et al. Novel trends in proton exchange membrane fuel cells[J]. Energies, 2022, 15(14): 4949. DOI: 10.3390/en15144949.
|
5 |
CHEN Y Z, ZHANG S M, CHUNG-YEN JUNG J, et al. Carbons as low-platinum catalyst supports and non-noble catalysts for polymer electrolyte fuel cells[J]. Progress in Energy and Combustion Science, 2023, 98: 101101. DOI: 10.1016/j.pecs. 2023.101101.
|
6 |
孔晨华, 张建军, 李旺, 等. 燃料电池在无人机高压输电线路验电系统中的应用展望[J]. 储能科学与技术, 2024, 13(2): 492-494. DOI: 10.19799/j.cnki.2095-4239.2024.0012.
|
|
KONG C H, ZHANG J J, LI W, et al. Application prospect of fuel cell in UAVS high voltage transmission line checking system[J]. Energy Storage Science and Technology, 2024, 13(2): 492-494. DOI: 10.19799/j.cnki.2095-4239.2024.0012.
|
7 |
胡冶州, 王双, 申涛, 等. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. DOI: 10.19799/j.cnki.2095-4239.2022.0108.
|
|
HU Y Z, WANG S, SHEN T, et al. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction[J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. DOI: 10.19799/j.cnki.2095-4239.2022.0108.
|
8 |
CAI J L, CHEN J X, CHEN Y Z, et al. Engineering carbon semi-tubes supported platinum catalyst for efficient oxygen reduction electrocatalysis[J]. iScience, 2023, 26(5): 106730. DOI: 10.1016/j.isci.2023.106730.
|
9 |
ZAMAN S, HUANG L, DOUKA A I, et al. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angewandte Chemie International Edition, 2021, 60(33): 17832-17852. DOI: 10.1002/anie.202016977.
|
10 |
AHN C Y, PARK J E, KIM S J, et al. Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells[J]. Chemical Reviews, 2021, 121(24): 15075-15140. DOI: 10.1021/acs.chemrev.0c01337.
|
11 |
CAO S, SUN T, LI J R, et al. The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application[J]. Nano Research, 2022, 16(4): 4365-4380. DOI: 10.1007/s12274-022-5082-z.
|
12 |
RAO X B, ZHANG S M, ZHANG J J. Effectively controlling the nanostructures and active sites of non-noble carbon catalysts for improving oxygen reduction reaction[J]. Current Opinion in Electrochemistry, 2023, 42: 101416. DOI: 10.1016/j.coelec. 2023.101416.
|
13 |
YANG Z L, CHEN Y Z, ZHANG S M, et al. Identification and understanding of active sites of non-noble iron-nitrogen-carbon catalysts for oxygen reduction electrocatalysis[J]. Advanced Functional Materials, 2023, 33(26): 2215185. DOI: 10.1002/adfm. 202215185.
|
14 |
LIU L Q, RAO X B, ZHANG S M, et al. Insight into synergy for oxygen reduction electrocatalysis of iron-nitrogen-carbon[J]. Chem, 2024, 10(7): 1994-2030. DOI: 10.1016/j.chempr.2024.06.006.
|
15 |
CHEN M H, CHEN Y T, YANG Z L, et al. Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic FeⅡ-N4 oxygen reduction active sites[J]. Chinese Journal of Catalysis, 2022, 43(7): 1870-1878. DOI: 10.1016/s1872-2067(21)63992-x.
|
16 |
CAMPOS-ROLDAN C A, JONES D J, ROZIEREJ, et al. Platinum-rare earth alloy electrocatalysts for the oxygen reduction reaction: A brief overview[J]. ChemCatChem, 2022, 14(19): e202200334. DOI: 10.1002/cctc.202200334.
|
17 |
SUN L Y, CHEN Y Z, ZHANG R W, et al. Synergy of porous network nanostructuring and nonmetallic phosphorus alloying for efficient oxygen reduction of platinum[J]. Journal of Alloys and Compounds, 2024, 985: 173988. DOI: 10.1016/j.jallcom. 2024. 173988.
|
18 |
PARKASH A, JIA Z, TIAN T, et al. A new generation of platinum-copper electrocatalysts with ultra-low concentrations of platinum for oxygen-reduction reactions in alkaline media[J]. ChemistrySelect, 2020, 5(11): 3391-3397. DOI: 10.1002/slct.202000256.
|
19 |
YUAN C, ZHANG S M, ZHANG J J. Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells[J]. Frontiers in Energy, 2024, 18(2): 206-222. DOI: 10.1007/s11708-023-0907-3.
|
20 |
CHEN T, NINGF H, Qi J Z, et al. PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction[J]. iScience, 2023, 26(1): 105890. DOI: 10.1016/j.isci.2022.105890.
|
21 |
CHEN Y Z, ZHANG R W, SUN L Y, et al. Boron-alloyed porous network platinum nanospheres for efficient oxygen reduction in proton exchange membrane fuel cells[J]. Chemical Engineering Journal, 2024, 485: 149998. DOI: 10.1016/j.cej.2024.149998.
|
22 |
YANG C D, GAO Y, MA T, et al. Metal alloys-structured electrocatalysts: Metal-metal interactions, coordination microenvironments, and structural property-reactivity relationships[J]. Advanced Materials, 2023, 35(51): e2301836. DOI: 10.1002/adma.202301836.
|
23 |
KIM D G, SOHN Y, JANG I, et al. Formation mechanism of carbon-supported hollow PtNi nanoparticles via one-step preparations for use in the oxygen reduction reaction[J]. Catalysts, 2022. 12(5): 513. DOI: 10.3390/catal12050513.
|
24 |
LU B A, TIAN N, SUN S G. Surface structure effects of platinum-based catalysts for oxygen reduction reaction[J]. Current Opinion in Electrochemistry, 2017, 4(1): 76-82. DOI: 10.1016/j.coelec. 2017.09.024.
|
25 |
CHEN Y Z, ZHAO X, YAN H L, et al. Manipulating Pt-skin of porous network Pt-Cu alloy nanospheres toward efficient oxygen reduction[J]. Journal of Colloid and Interface Science, 2023, 652: 1006-1015. DOI: 10.1016/j.jcis.2023.08.134.
|
26 |
PARKASH A. Metal-organic framework derived ultralow-loading platinum-copper catalyst: A highly active and durable bifunctional electrocatalyst for oxygen-reduction and evolution reactions[J]. Nanotechnology, 2021, 32(32): 325703. DOI: 10.1088/1361-6528/abfb9b.
|
27 |
ZHANG H M, GUOX Y, LIU W H, et al. Regulating surface composition of platinum-copper nanotubes for enhanced hydrogen evolution reaction in all pH values[J]. Journal of Colloid and Interface Science, 2023, 629(Part A): 53-62. DOI: 10.1016/j.jcis.2022.08.116.
|
28 |
SU L, SHRESTHA S J, ZHANG Z H, et al. Platinum-copper nanotube electrocatalyst with enhanced activity and durability for oxygen reduction reactions[J]. Journal of Materials Chemistry A, 2013, 1(39): 12293-12301. DOI: 10.1039/c3ta13097e.
|
29 |
CUI S K, GUO D J. Microwave-assisted preparation of PtCu/C nanoalloys and their catalytic properties for oxygen reduction reaction[J]. Journal of Alloys and Compounds, 2021, 874: 159869. DOI: 10.1016/j.jallcom.2021.159869.
|
30 |
CAI J L, CHEN Y Z, ZHANG R W, et al. Interfacial Pt-N coordination for promoting oxygen reduction reaction[J]. Chinese Chemical Letters, 2025, 36(2): 110255. DOI: 10.1016/j.cclet. 2024.110255.
|
31 |
蔡佳琳, 陈艺哲, 容忠言, 等. 微波合成碳载铂用于氧还原电催化[J]. 储能科学与技术, 2022, 11(12): 3800-3807. DOI: 10.19799/j.cnki. 2095-4239.2022.0473.
|
|
CAI J L, CHEN Y Z, RONG Z Y, et al. Microwave synthesis of carbon supported platinum for oxygen reduction electrocatalysis[J]. Energy Storage Science and Technology, 2022, 11(12): 3800-3807. DOI: 10.19799/j.cnki.2095-4239.2022.0473.
|