[1] |
XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. DOI: 10.1021/cr500003w.
|
[2] |
KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. DOI: 10.1039/C8TA10513H.
|
[3] |
CHEN S, HUANG L L, WEN X Y, et al. Formation mechanism and regulation of LiF in a solid electrolyte interphase on graphite anodes in carbonate electrolytes[J]. The Journal of Physical Chemistry C, 2023, 127(24): 11462-11471. DOI: 10.1021/acs.jpcc.3c02731.
|
[4] |
SUN Z Y, ZHOU H B, LUO X H, et al. Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: Lithium 4-benzonitrile trimethyl borate[J]. Journal of Power Sources, 2021, 503: 230033. DOI: 10.1016/j.jpowsour. 2021.230033.
|
[5] |
WANG K, WAN J J, XIANG Y X, et al. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries[J]. Journal of Power Sources, 2020, 460: 228062. DOI: 10.1016/j.jpowsour.2020. 228062.
|
[6] |
WANG L L, CHEN B B, MA J, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47(17): 6505-6602. DOI: 10.1039/C8CS00322J.
|
[7] |
HU Z M, WANG K, CHE Y X, et al. A novel electrolyte additive enables high-voltage operation of nickel-rich oxide/graphite cells[J]. The Journal of Physical Chemistry Letters, 2021, 12(18): 4327-4338. DOI: 10.1021/acs.jpclett.1c00803.
|
[8] |
TANG C, CHEN Y W, ZHANG Z F, et al. Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification[J]. Nano Research, 2023, 16(3): 3864-3871. DOI: 10.1007/s12274-022-4955-5.
|
[9] |
SHAO L, ZHOU L, YANG L S, et al. Enhanced 4.5 V/55 ℃ cycling performance of LiCoO2 cathode via LiAlO2 LiCo1- xAlxO2 double-layer coatings[J]. Electrochimica Acta, 2019, 297: 742-748. DOI: 10.1016/j.electacta.2018.12.044.
|
[10] |
KONG W J, ZHANG J C, WONG D, et al. Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes[J]. Angewandte Chemie International Edition, 2021, 60(52): 27102-27112. DOI: 10.1002/anie.202112508.
|
[11] |
SUN L W, ZHANG Z S, HU X F, et al. Realization of Ti doping by electrostatic assembly to improve the stability of LiCoO2 cycled to 4.5 V[J]. Journal of the Electrochemical Society, 2019, 166(10): A1793-A1798. DOI: 10.1149/2.0421910jes.
|
[12] |
LI G J, LIAO Y H, LI Z F, et al. Constructing a low-impedance interface on a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode with 2, 4, 6-triphenyl boroxine as a film-forming electrolyte additive for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37013-37026. DOI: 10.1021/acsami.0c05623.
|
[13] |
LI G J, FENG Y, ZHU J Y, et al. Achieving a highly stable electrode/electrolyte interface for a nickel-rich cathode via an additive-containing gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36656-36667. DOI: 10.1021/acsami.2c09103.
|
[14] |
LI T T, LIN J L, XING L D, et al. Insight into the contribution of nitriles as electrolyte additives to the improved performances of the LiCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2022, 13(37): 8801-8807. DOI: 10.1021/acs.jpclett.2c02032.
|
[15] |
LI C L, ZONG F F, HUANG J, et al. Inhibition of silicon-based anode interfacial volume expansion behavior by 1, 3, 6-hexane trinitrile additive via induced interfacial solvation effect[J]. Journal of Power Sources, 2024, 613: 234922. DOI: 10.1016/j.jpowsour. 2024.234922.
|
[16] |
LIU W, SHI Y L, ZHUANG Q C, et al. Ethylene glycol bis(propionitrile) ether as an additive for SEI film formation in lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15(5): 4722-4738. DOI: 10.20964/2020.05.13.
|
[17] |
XIA J, SINHA N N, CHEN L P, et al. Study of methylene methanedisulfonate as an additive for Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 161(1): A84-A88. DOI: 10. 1149/2.034401jes.
|
[18] |
ZHANG Z, LIU F Y, HUANG Z Y, et al. Enhancing the electrochemical performance of a high-voltage LiCoO2 cathode with a bifunctional electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(11): 12954-12964. DOI: 10.1021/acsaem.1c02593.
|
[19] |
ZUO X X, DENG X, MA X D, et al. 3-(Phenylsulfonyl)propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(30): 14725-14733. DOI: 10.1039/C8TA04558E.
|
[20] |
ZOU Y, CHENG Y, LIN J D, et al. Boosting high voltage cycling of LiCoO2 cathode via triisopropanolamine cyclic borate electrolyte additive[J]. Journal of Power Sources, 2022, 532: 231372. DOI: 10.1016/j.jpowsour.2022.231372.
|
[21] |
CHEN S, WEN X Y, CHEN Y L, et al. Distinctive interphasial properties and high structural reversibility endowed by B-/ CN–electrolyte additive and its superior electrochemical performance for graphite/LiCoO2 pouch cells[J]. Chemical Engineering Journal, 2024, 479: 147813. DOI: 10.1016/j.cej.2023.147813.
|
[22] |
XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418. DOI: 10.1021/cr030203g.
|
[23] |
ZHAO W M, ZHENG B Z, LIU H D, et al. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance[J]. Nano Energy, 2019, 63: 103815. DOI: 10.1016/j.nanoen.2019.06.011.
|