[1] |
JIN Y, SUN S, OU M, et al. High-Performance Hard Carbon Anode: Tunable Local Structures and Sodium Storage Mechanism[J/OL]. ACS APPLIED ENERGY MATERIALS, 2018, 1(5): 2295-2305. DOI:10.1021/acsaem.8b00354.
|
[2] |
PHOGAT P, RAWAT S, DEY S, et al. Advancements and challenges in sodium-ion batteries: A comprehensive review of materials, mechanisms, and future directions for sustainable energy storage[J/OL]. Journal of Alloys and Compounds, 2025, 1020: 179544. DOI:10.1016/j.jallcom.2025.179544.
|
[3] |
MU B Y, CHI C L, YANG X H, et al. A review of hard carbon anodes for rechargeable sodium-ion batteries[J/OL]. New Carbon Materials, 2024, 39(5): 796-823. DOI:10.1016/S1872-5805(24)60884-X.
|
[4] |
ZHONG B, LIU C, XIONG D, et al. Biomass-Derived Hard Carbon for Sodium-Ion Batteries: Basic Research and Industrial Application[J/OL]. ACS Nano, 2024, 18(26): 16468-16488. DOI:10.1021/acsnano.4c03484.
|
[5] |
SUN N, ZHAO R, XU M, et al. Design advanced nitrogen/oxygen co-doped hard carbon microspheres from phenolic resin with boosted Na-storage performance[J/OL]. Journal of Power Sources, 2023, 564: 232879. DOI:10.1016/j.jpowsour.2023.232879.
|
[6] |
WANG K, SUN F, SU Y, et al. Natural template derived porous carbon nanoplate architectures with tunable pore configuration for a full-carbon sodium-ion capacitor[J/OL]. Journal of Materials Chemistry A, 2021, 9(41): 23607-23618. DOI:10.1039/D1TA04485K.
|
[7] |
LI X, WANG H, LIU X, et al. High-performance pitch-based hard carbon for sodium-ion batteries: Introducing oxygen functional groups and regulating closed pores by adjusting pre-oxidation rate[J/OL]. Journal of Energy Storage, 2025, 108: 114995. DOI:10.1016/j.est.2024.114995.
|
[8] |
LIU M, ZHANG Z, HAN X, et al. Fabrication of pitch-derived hard carbon via bromination-assisted pyrolysis strategy for sodium-ion batteries[J/OL]. NANOSCALE, 2025. DOI:10.1039/d4nr05322b.
|
[9] |
WANG J, XI L, PENG C, et al. Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries[J/OL]. Advanced Engineering Materials, 2024, 26(8): 2302063. DOI:10.1002/adem.202302063.
|
[10] |
XIONG Z, YUE L, ZHANG Y, et al. Structural regulation of asphalt-based hard carbon microcrystals based on liquid-phase crosslinking to enhance sodium storage[J/OL]. Journal of Colloid and Interface Science, 2024, 658: 610-616. DOI:10.1016/j.jcis.2023.12.096.
|
[11] |
ZHAO G, XU T, ZHAO Y, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries[J/OL]. Energy Storage Materials, 2024, 67: 103282. DOI:10.1016/j.ensm.2024.103282.
|
[12] |
GUO H Y, LI Y Y, WANG C lei, et al. Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons[J/OL]. New Carbon Materials, 2021, 36(6): 1073-1078. DOI:10.1016/S1872-5805(21)60075-6.
|
[13] |
XIAO K, WANG P, BAI J, et al. Deep oxygen-crosslinking and self-coating synergetic engineering on pitch-based hard carbon anode for sodium-ion batteries[J/OL]. Journal of Colloid and Interface Science, 2025, 686: 267-276. DOI:10.1016/j.jcis.2025.01.220.
|
[14] |
SUN C, DU W S, SUN Q. N, P co-doping for microstructural regulation of pitch-derived carbon toward high-rate sodium storage[J/OL]. Journal of Alloys and Compounds, 2025: 179832. DOI:10.1016/j.jallcom.2025.179832.
|
[15] |
WU J, YANG T, SONG Y, et al Preparation of disordered carbon for alkali metal-ion (Lithium, Sodium, and Potassium) batteries by pitch molecular modification: A review[J/OL]. Carbon, 2024, 221: 118902. DOI:10.1016/j.carbon.2024.118902.
|
[16] |
WANG Y, XIAO N, WANG Z, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J/OL]. Chemical Engineering Journal, 2018, 342: 52-60. DOI:10.1016/j.cej.2018.01.098.
|
[17] |
GAO H, DING L, BAI H, et al. Pitch-based hyper-cross-linked polymers with high performance for gas adsorption[J/OL]. Journal of Materials Chemistry A, 2016, 4(42): 16490-16498. DOI:10.1039/C6TA07033G.
|
[18] |
WANG J, YAN L, LIU B, et al. A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage[J/OL]. Chinese Chemical Letters, 2023, 34(4): 107526. DOI:10.1016/j.cclet.2022.05.040.
|
[19] |
XU R, YI Z, SONG M, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J/OL]. Carbon, 2023, 206: 94-104. DOI:10.1016/j.carbon.2023.02.004.
|
[20] |
JI Y, LI S, YUAN T, et al. Enhancing the sodium storage performance of hard carbon by constructing thin carbon coatings via esterification reactions[J/OL]. Journal of Colloid and Interface Science, 2025, 677: 719-728. DOI:10.1016/j.jcis.2024.08.051.
|
[21] |
CHU Y, ZHANG J, ZHANG Y, et al. Reconfiguring Hard Carbons with Emerging Sodium‐Ion Batteries: A Perspective[J/OL]. Advanced Materials, 2023, 35(31)[2025-03-29]. https://onlinelibrary.wiley.com/doi/10.1002/adma.202212186. DOI:10.1002/adma.202212186.
|
[22] |
High-Performance Hard Carbon Anode: Tunable Local Structures and Sodium Storage Mechanism | ACS Applied Energy Materials[EB/OL]. [2024-12-24]. https://pubs.acs.org/doi/10.1021/acsaem.8b00354.
|
[23] |
ZHANG S, SUN N, LI X, et al. Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage[J/OL]. ENERGY STORAGE MATERIALS, 2024, 66: 103183. DOI:10.1016/j.ensm.2024.103183.
|
[24] |
FAN X, KONG X, ZHANG P, et al. Research progress on hard carbon materials in advanced sodium-ion batteries[J/OL]. Energy Storage Materials, 2024, 69: 103386. DOI:10.1016/j.ensm.2024.103386.
|
[25] |
ZHAO Y, CONG Y, NING H, et al. N, P co-doped pitch derived soft carbon nanoboxes as high-performance anodes for sodium-ion batteries[J/OL]. Journal of Alloys and Compounds, 2022, 918: 165691. DOI:10.1016/j.jallcom.2022.165691.
|
[26] |
CHEN X, LIU C, FANG Y, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J/OL]. Carbon Energy, 2022, 4(6): 1133-1150. DOI:10.1002/cey2.196.
|
[27] |
HE H, SUN D, TANG Y, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J/OL]. Energy Storage Materials, 2019, 23: 233-251. DOI:10.1016/j.ensm.2019.05.008.
|
[28] |
REN Q, WANG J, YAN L, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J/OL]. Chemical Engineering Journal, 2021, 425: 131656. DOI:10.1016/j.cej.2021.131656.
|
[29] |
YU T, LI G, DUAN Y, et al. The research and industrialization progress and prospects of sodium ion battery[J/OL]. Journal of Alloys and Compounds, 2023, 958: 170486. DOI:10.1016/j.jallcom.2023.170486.
|