储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3785-3795.doi: 10.19799/j.cnki.2095-4239.2025.0373

• 储能系统与工程 • 上一篇    下一篇

运行参数及间歇启停策略对地埋管蓄热性能的影响

冯国会(), 卢伟东, 王茜如, 黄凯良, 田晓珂   

  1. 沈阳建筑大学市政与环境工程学院,辽宁 沈阳 110168
  • 收稿日期:2025-04-16 修回日期:2025-04-30 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 冯国会 E-mail:fengguohui888@163.com
  • 作者简介:冯国会(1964—),男,博士,教授,研究方向为相变储能、可再生能源利用研究,E-mail:fengguohui888@163.com
  • 基金资助:
    “十四五”国家重点研发计划资助(2022YFC3802400)

Influence of operational parameters and intermittent start-stop strategy on thermal storage performance of ground heat exchangers

Guohui FENG(), Weidong LU, Xiru WANG, Kailiang HUANG, Xiaoke TIAN   

  1. School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China
  • Received:2025-04-16 Revised:2025-04-30 Online:2025-10-28 Published:2025-10-20
  • Contact: Guohui FENG E-mail:fengguohui888@163.com

摘要:

地埋管跨季节储热(BTES)系统的蓄热运行工况调控对于整个系统的运行效率和稳定性至关重要。本工作以蓄热工况下运行参数及间歇启停策略为研究对象,结合沈阳建筑大学BTES示范工程现场实测,获得土壤导热系数为1.72 W/(m·K),建立全尺寸三维瞬态仿真模型,并通过实验对其进行验证,分析地埋管进口流速、进口温度及间歇启停对蓄热性能的影响规律。结果表明:双U形管与单U形管的单位井深换热量比值随着时间的推移不断降低,表明双U形管的结构优势随蓄热时间的拉长而减弱。随着进口流速的不断增加,U形管进出口温差不断衰减,且双U形管因热短路效应导致进出口温差始终低于单U形管;通过换热压降比优化确定单/双U形管最佳流速区间分别为0.4~0.6 m/s和0.2~0.4 m/s。随着流体进口温度的不断升高,埋管周围土壤温度也不断上升,热影响范围扩大112.5%,换热量和进出口温差随进口温度呈线性增长。埋管周围土壤温度随启停时间比增大而升高,而土壤恢复速率将随之下降;间歇运行的总蓄热量较连续运行降低13.38%~26.31%,但换热效率可提高29%~47%,表明间歇运行可有效缓解热堆积并提高埋管蓄热效率。本研究结果为寒冷地区BTES系统的蓄热运行设计提供理论依据。

关键词: 地埋管, 跨季节储热, 运行参数, 间歇运行, 热响应测试, 数值模拟

Abstract:

Efficient regulation of charging parameters in borehole thermal energy Sstorage (BTES) systems is crucial for ensuring system efficiency and long-term stability. This study investigates the influence of key operational variables and intermittent start-stop strategies on thermal storage efficiency during the charging phase. A full-scale, three-dimensional transient simulation model is developed and validated using field data from a BTES demonstration project at Shenyang Jianzhu University, where initial ground temperature and soil thermal conductivity were 10.94 ℃ and 1.72 W/(m·K), respectively. The analysis examines the influence of inlet flow velocity, inlet temperature, and intermittent operation patterns on the heat storage process. Results reveal four primary findings: (1) The heat exchange ratio per borehole depth between double U-tubes and single U-tubes decreases from 2 to 1.4 over time, indicating that the structural advantage of double U-tubes diminishes with prolonged thermal storage. (2) As inlet flow velocity increases (0.07—1 m/s), the temperature difference between U-tube inlet and outlet declines, with double U-tubes exhibiting lower temperature differences than single U-tubes due to thermal short-circuiting effects. Optimal flow velocity ranges for single and double U-tubes are determined as 0.4—0.6 m/s and 0.2—0.4 m/s, respectively, based on the ratio of heat transfer to pressure drop. (3) Increasing the fluid inlet temperature from 30 ℃ to 80 ℃ elevates the soil temperature around the borehole, expanding the thermal influence radius from 0.4 to 0.85 m (a 112.5% increase). Heat exchange capacity and temperature difference exhibit linear growth with rising inlet temperature. (4) When the start-stop time ratio increases from 1 to 2, soil temperature at r = 0.2 m rises from 26.62 ℃ to 29.81 ℃, while recovery rate decreases from 17.53% to 7.65%. Intermittent operation reduces total heat storage by 13.38%—26.31% compared to continuous operation but improves heat exchange efficiency by 29%—47%, demonstrating its effectiveness in mitigating thermal accumulation and enhancing storage efficiency. These findings provide theoretical and practical insights for optimizing BTES operational strategies, supporting the design of more efficient seasonal thermal energy storage systems in cold regions.

Key words: buried pipes, seasonal thermal storage, operational parameters, intermittent operation, thermal response test, numerical simulation

中图分类号: