储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 4027-4036.doi: 10.19799/j.cnki.2095-4239.2025.0352

• 储能测试与评价 • 上一篇    下一篇

基于拓扑优化的相变储热单元快速熔化传热结构设计

谢鑫(), 薛新杰, 赵长颖()   

  1. 上海交通大学机械与动力工程学院工程热物理研究所,上海 200240
  • 收稿日期:2025-04-09 修回日期:2025-04-18 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 赵长颖 E-mail:xiexin5718@sjtu.edu.cn;changying.zhao@sjtu.edu.cn
  • 作者简介:谢鑫(2000—),男,硕士研究生,研究方为相变储热系统,E-mail:xiexin5718@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFB4005400);国家自然科学基金青年学生基础研究项目博士研究生(524B2092);国家自然科学基金重大项目(52090063);上海市科技创新行动计划(23DZ1200900)

Topology-optimized heattransfer structure design for fast melting in phase change thermal energy storage units

Xin XIE(), Xinjie XUE, Changying ZHAO()   

  1. Institute of Engineering Thermophysics, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2025-04-09 Revised:2025-04-18 Online:2025-10-28 Published:2025-10-20
  • Contact: Changying ZHAO E-mail:xiexin5718@sjtu.edu.cn;changying.zhao@sjtu.edu.cn

摘要:

相变储热是利用材料在相变时吸收/释放大量相变焓进行储/放热的储能技术,具有储能密度大、温度变化小、体积占用小等优势。本工作将拓扑优化与相变储热结合,以管壳式相变储热单元为研究对象,通过无量纲化控制方程建立了优化计算的数学模型,讨论了材料热扩散率之比、Stefan数以及自然对流效应对肋片结构的影响。对拓扑优化结果进行几何重构,并与普通直肋结构和未经重构设计的优化结构进行数值模拟和比较分析。结果表明,自然对流效应对拓扑优化设计结果的影响显著,导热设计与对流设计表现出明显差异化的肋片结构。降低热扩散率之比或增大相变材料的Stefan数都能促进肋片结构的径向生长。对5种肋片结构的模拟结果表明,拓扑优化设计明显提升了储热单元的换热效率,对流设计使模型平均无量纲温度达到0.9的时间缩短了30.1%,材料完成相变所需时间缩短了50.8%。此外,导热设计和对流设计在不同的应用场景和储能目标下具有各自的优势,应根据实际需求选择。本工作对相变储热装置的优化设计提供了一定的参考。

关键词: 相变储热, 拓扑优化, 强化换热, 数值模拟, 肋片结构

Abstract:

Phase change thermal energy storage (PCTES) systems utilize the latent heat absorbed or released during material phase transitions to store and discharge thermal energy. These systems offer key advantages such as high energy density, stable temperature operation, and compact volume. This study integrates topology optimization into the design of shell-and-tube PCTES units to accelerate the melting process and improve overall thermal performance. A mathematical optimization model is developed using dimensionless governing equations to investigate the effects of thermal diffusivity ratio, Stefan number, and natural convection on the evolution of fin geometries. Topology-optimized structures are reconstructed geometrically, followed by numerical simulations and performance comparisons with conventional straight-fin structures and non-reconstructed optimized designs. The key findings are as follows: (1) Natural convection exerts a significant influence on the topology-optimized structure, resulting in notable differences between conduction-dominated and convection-enhanced designs. (2) A lower thermal diffusivity ratio or a higher Stefan number promotes radial expansion of the fin structures, enhancing heat transfer pathways. (3) Among five evaluated configurations, topology-optimized designs demonstrate substantial improvements in thermal charging efficiency. Specifically, the convection-enhanced design reduces the time required to reach an average dimensionless temperature of 0.9 by 30.1%, and shortens the total phase transition duration by 50.8%. The results also indicate that conduction- and convection-optimized designs offer distinct advantages depending on the application context and storage objectives, underscoring the importance of scenario-specific optimization. This work provides a novel approach and practical insights for the efficient design of phase change thermal energy storage systems across various thermal management applications.

Key words: phase change thermal energy storage, topology optimization, heat transfer enhancement, numerical simulation, fin structure

中图分类号: