[1] |
WANG J, LI Y X, WANG Y, et al. Experimental investigation of heat transfer performance of a heat pipe combined with thermal energy storage materials of CuO-paraffin nanocomposites[J]. Solar Energy, 2020, 211: 928-937. DOI: 10.1016/j.solener. 2020. 10.033.
|
[2] |
YANG X H, LU Z, BAI Q S, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins[J]. Applied Energy, 2017, 202: 558-570. DOI: 10.1016/j.apenergy.2017.05.007.
|
[3] |
胡茜芮, 张朝阳, 洪芳军. 高温相变胶囊梯级储热系统实验研究[J]. 储能科学与技术, 2023, 12(8): 2526-2535. DOI: 10.19799/j.cnki. 2095-4239.2023.0122.
|
|
HU X R, ZHANG C Y, HONG F J. Experimental study of high-temperature phase change capsule gradient heat storage system[J]. Energy Storage Science and Technology, 2023, 12(8): 2526-2535. DOI: 10.19799/j.cnki.2095-4239.2023.0122.
|
[4] |
MAWIRE A, EKWOMADU C S, SHOBO A B. Experimental charging characteristics of medium-temperature cascaded packed bed latent heat storage systems[J]. Journal of Energy Storage, 2021, 42: 103067. DOI: 10.1016/j.est.2021.103067.
|
[5] |
WU M, XU C, HE Y L. Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93: 1061-1073. DOI: 10.1016/j.applthermaleng.2015.10.014.
|
[6] |
PIZZOLATO A, SHARMA A, MAUTE K, et al. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization[J]. Applied Energy, 2017, 208: 210-227. DOI: 10.1016/j.apenergy. 2017.10.050.
|
[7] |
ZHAO M, TIAN Y, HU M Y, et al. Topology optimization of fins for energy storage tank with phase change material[J]. Numerical Heat Transfer, Part A: Applications, 2020, 77(3): 284-301. DOI: 10.1080/10407782.2019.1690338.
|
[8] |
ZHANG X Y, YANG X H, ZHANG Y N, et al. Phase change heat transfer enhancement based on topology optimization of fin structure[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124402. DOI: 10.1016/j.ijheatmasstransfer.2023. 124402.
|
[9] |
ALEXANDERSEN J, SIGMUND O, AAGE N. Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection[J]. International Journal of Heat and Mass Transfer, 2016, 100: 876-891. DOI: 10.1016/j.ijheatmasstransfer.2016. 05.013.
|
[10] |
姚莉, 张峰鸣, 赵明. 三套管相变蓄热器导热肋片的拓扑优化[J]. 动力工程学报, 2023, 43(4): 397-405. DOI: 10.19805/j.cnki.jcspe. 2023.04.002.
|
|
YAO L, ZHANG F M, ZHAO M. Topology optimization of heat conduction fins in three-tube phase change heat accumulator[J]. Journal of Chinese Society of Power Engineering, 2023, 43(4): 397-405. DOI: 10.19805/j.cnki.jcspe.2023.04.002.
|
[11] |
WANG Y J, ZADEH P G, DUONG X Q, et al. Optimizing fin design for enhanced melting performance in latent heat thermal energy storage systems[J]. Journal of Energy Storage, 2023, 73: 109108. DOI: 10.1016/j.est.2023.109108.
|
[12] |
QIAN S H, LOU S X, GE C L, et al. The influence of temperature dependent fluid properties on topology optimization of conjugate heat transfer[J]. International Journal of Thermal Sciences, 2022, 173: 107424. DOI: 10.1016/j.ijthermalsci.2021.107424.
|
[13] |
ALEXANDERSEN J, AAGE N, ANDREASEN C S, et al. Topology optimisation for natural convection problems[J]. International Journal for Numerical Methods in Fluids, 2014, 76(10): 699-721. DOI: 10.1002/fld.3954.
|
[14] |
MAKHIJA D S, BERAN P S. Concurrent shape and topology optimization for unsteady conjugate heat transfer[J]. Structural and Multidisciplinary Optimization, 2020, 62(3): 1275-1297. DOI: 10.1007/s00158-020-02554-y.
|
[15] |
AL-ABIDI A A, MAT S, SOPIAN K, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering, 2013, 53(1): 147-156. DOI: 10.1016/j.applthermaleng.2013.01.011.
|