储能科学与技术

• •    

钛系金属氢化物储氢反应器的设计和吸放氢过程数值研究

袁思哲1(), 刘宇豪2, 赵长颖1,2()   

  1. 1.上海交通大学中英国际低碳学院,上海 201306
    2.上海交通大学工程热物理研究所,上海 200240
  • 收稿日期:2025-04-09 修回日期:2025-04-30
  • 通讯作者: 赵长颖 E-mail:sz.yuan@sjtu.edu.cn;changying.zhao@sjtu.edu.cn
  • 作者简介:袁思哲(2000—),男,硕士研究生,研究方向:固态储氢,E-mail:sz.yuan@sjtu.edu.cn
  • 基金资助:
    国家重点研发项目(2023YFB4005400)

Design of Titanium-based Hydride Hydrogen Storage Reactor and Numerical Study of Hydrogen Absorption and Desorption Process

Sizhe YUAN1(), Yuhao LIU2, Changying ZHAO1,2()   

  1. 1.China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
    2.Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2025-04-09 Revised:2025-04-30
  • Contact: Changying ZHAO E-mail:sz.yuan@sjtu.edu.cn;changying.zhao@sjtu.edu.cn

摘要:

钛系储氢合金因其高室温体积储氢密度、快速吸放氢响应、低吸放氢压力、资源丰富及优异的可逆性,成为储氢领域的重要研究方向。然而,目前针对钛系金属氢化物储氢反应器吸放氢速率调控机制的研究较为有限。为优化吸放氢性能,本研究设计了一种便于拆装和填料的高换热性能钛系金属氢化物储氢反应器,并基于压力-组成-温度(P-C-T)曲线拟合TiFe0.8Mn0.2的吸放氢动力学参数,建立了流动、传热和化学反应多物理场耦合的三维仿真模型,准确模拟了不同温度条件下的吸放氢动力学行为。基于该模型,系统研究了氢气进出口压力、隔板间距、换热流体入口温度和流速等关键参数对吸放氢性能的影响。结果表明,在氢气进口压力为3MPa、初始孔隙率为0.4、冷却流体温度为15℃的条件下,饱和吸氢后反应器的体积储氢密度可达55.4g/L,在无量纲时间为0.219时金属氢化物分数达到0.95,具有较高的能量密度和较快的反应速率;在氢气出口压力为0.3MPa、加热流体温度为70℃的情况下,反应结束时放氢量达到饱和吸氢量的88.6%,无量纲时间为1时放氢量为84.8%,为大型储氢装置的设计提供了重要指导。

关键词: 反应动力学, 数值模拟, 储氢反应器, 换热效率

Abstract:

Titanium-based hydrogen storage alloys have become a key research focus in the hydrogen storage field due to their high volumetric hydrogen storage density at room temperature, rapid hydrogen absorption and desorption response, low absorption and desorption pressures, abundant resources, and excellent reversibility. However, research on the regulation of hydrogen absorption and desorption rates in titanium-based metal hydride hydrogen storage reactors remains limited. To optimize hydrogen absorption and desorption performance, this study designs a titanium-based metal hydride hydrogen storage reactor that is easy to assemble and refill, with high heat transfer performance. The study fits the hydrogen absorption and desorption kinetic parameters of TiFe0.8Mn0.2 based on the Pressure-Composition-Temperature (P-C-T) curve and establishes a three-dimensional multiphysics simulation model that couples flow, heat transfer, and chemical reactions. This model accurately simulates the hydrogen absorption and desorption behavior under various temperature conditions. The study systematically analyzes the impact of key parameters, such as hydrogen inlet and outlet pressure, spacer distance, heat transfer fluid inlet temperature, and flow rate, on hydrogen absorption and desorption performance. The results show that under conditions of a hydrogen inlet pressure of 3 MPa, initial porosity of 0.4, and cooling fluid temperature of 15 ℃, the reactor reaches a volumetric hydrogen storage density of 55.4 g/L after saturation absorption. When the dimensionless time reaches 0.219, the metal hydride fraction reaches 0.95, demonstrating high energy density and fast reaction rates. Under hydrogen outlet pressure of 0.3 MPa and heating fluid temperature of 70 ℃, the desorbed hydrogen amount reaches 88.6 % of the saturated hydrogen absorption amount by the end of the reaction, and at a dimensionless time of 1, the desorbed hydrogen amount reaches 84.8 %. These findings provide valuable guidance for the design of large-scale hydrogen storage systems.

Key words: Reaction kinetics, numerical simulation, metal hydride reactor, heat transfer efficiency

中图分类号: