储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3968-3981.doi: 10.19799/j.cnki.2095-4239.2025.0318
刘怡青1(), 王浩2, 陆玲霞1, 李昊展2, 闫旻睿1, 于淼1(
)
收稿日期:
2025-04-01
修回日期:
2025-04-29
出版日期:
2025-10-28
发布日期:
2025-10-20
通讯作者:
于淼
E-mail:22360285@zju.edu.cn;zjuyumiao@zju.edu.cn
作者简介:
刘怡青(2001—),女,硕士研究生,研究方向为锂离子电池异常检测,E-mail:22360285@zju.edu.cn;
基金资助:
Yiqing LIU1(), Hao WANG2, Lingxia LU1, Haozhan LI2, Minrui YAN1, Miao YU1(
)
Received:
2025-04-01
Revised:
2025-04-29
Online:
2025-10-28
Published:
2025-10-20
Contact:
Miao YU
E-mail:22360285@zju.edu.cn;zjuyumiao@zju.edu.cn
摘要:
储能系统中的电池模组运行状态复杂,准确识别异常锂电池对于系统的安全性和稳定性至关重要。针对传统异常检测方法存在的实时性不足和对异常样本依赖性强等问题,本工作提出一种融合局部离群因子与电池运行数据时空特征的无监督异常检测方法。该方法充分考虑了电池模组内的单体一致性和运行数据的变化,无需预训练即可实现高效、实时且准确的异常锂电池识别。具体包括:设计基于Cornish-Fisher展开式的分布校正方法以计算自适应阈值;采用滑动窗口机制对储能电站采集的连续数据流进行分段处理,构建动态数据片段,以提升模型对突发异常的响应能力;利用LOF算法对窗口内的时序数据进行局部密度分析,识别密度显著偏低的离群点,实现无监督异常检测。数据集3920~3960时间段的异常检测对比实验结果表明,本方法相较于K-means聚类、隔离森林、香农熵、自编码器等方法,准确识别出了异常的电池155和电池364,检测结果与人工标注完全一致,未出现任何误报或漏检,且所需检测时间最短(平均0.0106 s),展现出优异的通用性与工程适应性。
中图分类号:
刘怡青, 王浩, 陆玲霞, 李昊展, 闫旻睿, 于淼. 基于LOF和数据时空特征的异常锂电池实时检测[J]. 储能科学与技术, 2025, 14(10): 3968-3981.
Yiqing LIU, Hao WANG, Lingxia LU, Haozhan LI, Minrui YAN, Miao YU. Real-time abnormal-battery detection based on the local outlier factor algorithm and the spatiotemporal data features of battery cells[J]. Energy Storage Science and Technology, 2025, 14(10): 3968-3981.
表3
各方法的检测效果和运行时间"
方法 | 是否预训练 | 检测异常点 | 异常检出率 | 检测准确率 | 检测时间/s | |
---|---|---|---|---|---|---|
本工作所提出的检测框架 | K-means聚类 | N | [364] | 0.5 | 99.76% | 0.0317 |
隔离森林 | N | [130][155][182][246] [386][387][388][389] | 0.5 | 98.08% | 0.1099 | |
香农熵 | N | [155] | 0.5 | 99.76% | 0.0418 | |
余弦相似度 | N | [155][364] | 1.0 | 100% | 0.5971 | |
自编码器 | Y | [246][386][388][389] | 0 | 98.56% | 2.9411 | |
LOF | N | [155][364] | 1.0 | 100% | 0.0106 | |
PCA+CUSUM | Y | [155][ | 0.5 | 99.28% | 2.8286 | |
TSF+DQN | Y | 共检测到16个:异常分数前3[155][286] [338](无[364]) | 0.5 | 96.15% | 5.0936 | |
[1] | 李耀华, 孔力. 发展太阳能和风能发电技术 加速推进我国能源转型[J]. 中国科学院院刊, 2019, 34(4): 426-433. DOI: 10.16418/j.issn. 1000-3045.2019.04.007. |
LI Y H, KONG L. Developing solar and wind power generation technology to accelerate China's energy transformation[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 426-433. DOI: 10.16418/j.issn.1000-3045.2019.04.007. | |
[2] | 缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. DOI: 10.19799/j.cnki.2095-4239.2020.0059. |
MIAO P, YAO Z, LEMMON John, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. DOI: 10.19799/j.cnki.2095-4239.2020.0059. | |
[3] | MAO N, ZHANG T, WANG Z R, et al. A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge[J]. Journal of Power Sources, 2022, 518: 230767. DOI: 10.1016/j.jpowsour.2021.230767. |
[4] | GAN N F, SUN Z Y, ZHANG Z S, et al. Data-driven fault diagnosis of lithium-ion battery overdischarge in electric vehicles[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 4575-4588. DOI: 10.1109/TPEL.2021.3121701. |
[5] | HABIB A K M A, HASAN M K, ISSA G F, et al. Lithium-ion battery management system for electric vehicles: Constraints, challenges, and recommendations[J]. Batteries, 2023, 9(3): 152. DOI: 10.3390/batteries9030152. |
[6] | 孟国栋, 李雨珮, 唐佳, 等. 锂离子电池储能电站的热失控状态检测与安全防控技术研究进展[J]. 高电压技术, 2024, 50(7): 3105-3127. DOI: 10.13336/j.1003-6520.hve.20232357. |
MENG G D, LI Y P, TANG J, et al. Research progress of thermal runaway detection and safety control technology for lithium-ion battery energy storage power stations[J]. High Voltage Engineering, 2024, 50(7): 3105-3127. DOI: 10.13336/j.1003-6520. hve.20232357. | |
[7] | 李首顶, 李艳, 田杰, 等. 锂离子电池电力储能系统消防安全现状分析[J]. 储能科学与技术, 2020, 9(5): 1505-1516. DOI: 10.19799/j.cnki.2095-4239.2020.0111. |
LI S D, LI Y, TIAN J, et al. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications[J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. DOI: 10.19799/j.cnki.2095-4239.2020.0111. | |
[8] | BRAVO DIAZ L, HE X Z, HU Z W, et al. Review- Meta-review of fire safety of lithium-ion batteries: Industry challenges and research contributions[J]. Journal of the Electrochemical Society, 2020, 167(9): 090559. DOI: 10.1149/1945-7111/aba8b9. |
[9] | CHEN Y Q, KANG Y Q, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99. DOI: 10.1016/j.jechem.2020.10.017. |
[10] | XUE Q, LI G, ZHANG Y J, et al. Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution[J]. Journal of Power Sources, 2021, 482: 228964. DOI: 10.1016/j.jpowsour.2020.228964. |
[11] | WU X G, WEI Z X, WEN T, et al. Research on short-circuit fault-diagnosis strategy of lithium-ion battery in an energy-storage system based on voltage cosine similarity[J]. Journal of Energy Storage, 2023, 71: 108012. DOI: 10.1016/j.est.2023.108012. |
[12] | BHASKAR K, KUMAR A, BUNCE J, et al. Data-driven thermal anomaly detection in large battery packs[J]. Batteries, 2023, 9(2): 70. DOI: 10.3390/batteries9020070. |
[13] | SHANG Y L, LU G P, KANG Y Z, et al. A multi-fault diagnosis method based on modified Sample Entropy for lithium-ion battery strings[J]. Journal of Power Sources, 2020, 446: 227275. DOI: 10.1016/j.jpowsour.2019.227275. |
[14] | WANG Z P, HONG J C, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196: 289-302. DOI: 10.1016/j.apenergy.2016.12.143. |
[15] | 郭铁峰, 贺建军, 申帅, 等. 基于动态规整与改进变分自编码器的异常电池在线检测方法[J]. 电子与信息学报, 2024, 46(2): 738-747. |
GUO T F, HE J J, SHEN S, et al. Abnormal battery on-line detection method based on dynamic time warping and improved variational auto-encoder[J]. Journal of Electronics & Information Technology, 2024, 46(2): 738-747. | |
[16] | ZHAO Y, LIU P, WANG Z P, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354-362. DOI: 10.1016/j.apenergy. 2017.05.139. |
[17] | ZHANG J Z, WANG Y N, JIANG B B, et al. Realistic fault detection of li-ion battery via dynamical deep learning[J]. Nature Communications, 2023, 14: 5940. DOI: 10.1038/s41467-023-41226-5. |
[18] | CHAE S G, BAE S J. An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries[J]. Reliability Engineering & System Safety, 2025, 259: 110926. DOI: 10.1016/j.ress.2025.110926. |
[19] | CHEN J C. Degradation self-supervised learning for lithium-ion battery health diagnostics[EB/OL]. [2025-04-23]. https://arxiv.org/abs/2503.08083. |
[20] | GHANIM J, AWAD M. An unsupervised anomaly detection in electricity consumption using reinforcement learning and time series forest based framework[J]. Journal of Artificial Intelligence and Soft Computing Research, 2025, 15(1): 5-24. DOI: 10.2478/jaiscr-2025-0001. |
[21] | SONG Y, YU J S, ZHOU J H, et al. Detection of voltage fault in lithium-ion battery based on equivalent circuit model-informed neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 3508010. DOI: 10.1109/TIM.2024. 3350153. |
[22] | 王昌松, 陈辉, 王立成, 等. 考虑测量野值的锂电池异常数据检测与SOC估计算法[J]. 电子科技, 2023, 36(5): 34-40. DOI: 10.16180/j.cnki.issn1007-7820.2023.05.006. |
WANG C S, CHEN H, WANG L C, et al. Abnormal data detection and SOC estimation algorithm for lithium battery considering measured outliers[J]. Electronic Science and Technology, 2023, 36(5): 34-40. DOI: 10.16180/j.cnki.issn1007-7820.2023.05.006. | |
[23] | XU Y M, GE X H, SHEN W X. Multi-objective nonlinear observer design for multi-fault detection of lithium-ion battery in electric vehicles[J]. Applied Energy, 2024, 362: 122989. DOI: 10.1016/j.apenergy.2024.122989. |
[24] | MCKAY M B, GOPALUNI B, WETTON B. Learning the P2D model for lithium-ion batteries with SOH detection[EB/OL]. [2025-04-23]. https://arxiv.org/abs/2502.14147. |
[25] | RAHMAN M A, ANWAR S, IZADIAN A. Electrochemical model based fault diagnosis of a lithium ion battery using multiple model adaptive estimation approach[C]//2015 IEEE International Conference on Industrial Technology (ICIT). March 17-19, 2015, Seville, Spain. IEEE, 2015: 210-217. DOI: 10.1109/ICIT.2015. 7125101. |
[26] | MARTIN J, MONSALVE-SERRANO J, MICÓ C, et al. Thermal model for the analysis of the thermal runaway in lithium-ion batteries using accelerating rate calorimetry[C]//SAE Technical Paper Series. Capri, Italy. SAE International, 2023: DOI: 10.4271/2023-24-0162. |
[27] | WEI J W, DONG G Z, CHEN Z H. Lyapunov-based thermal fault diagnosis of cylindrical lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4670-4679. DOI: 10.1109/TIE.2019.2931275. |
[28] | 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2): 194-202. |
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202. | |
[29] | BOUKELA L, ZHANG G X, YACOUB M, et al. A modified LOF-based approach for outlier characterization in IoT[J]. Annals of Telecommunications, 2021, 76(3): 145-153. DOI: 10.1007/s12243- 020-00780-5. |
[30] | 李晓宇, 陈炫锴, 李嘉栩, 等. 基于机器学习的电动汽车续航里程预测[J]. 电器与能效管理技术, 2021(10): 78-82, 91. DOI: 10.16628/j.cnki.2095-8188.2021.10.013. |
LI X Y, CHEN X K, LI J X, et al. Driving range prediction of electric vehicles based on machine learning[J]. Electrical & Energy Management Technology, 2021(10): 78-82, 91. DOI: 10. 16628/j.cnki.2095-8188.2021.10.013. | |
[31] | 刘启全, 马建, 赵轩, 等. 基于值率模型的电动汽车动力电池电压异常检测[J]. 汽车工程, 2023, 45(9): 1728-1739. DOI: 10.19562/j.chinasae.qcgc.2023.09.021. |
LIU Q Q, MA J, ZHAO X, et al. Abnormal voltage detection of battery for electric vehicles based on value rate model[J]. Automotive Engineering, 2023, 45(9): 1728-1739. DOI: 10.19562/j.chinasae.qcgc.2023.09.021. | |
[32] | CARDOSO D O, GALENO T D. Online evaluation of the Kolmogorov-Smirnov test on arbitrarily large samples[J]. Journal of Computational Science, 2023, 67: 101959. DOI: 10.1016/j.jocs.2023.101959. |
[33] | LI M, CHENG F Y, YANG J, et al. A fault detection method for electric vehicle battery system based on Bayesian optimization SVDD considering a few faulty samples[J]. Energy Engineering, 2024, 121(9): 2543-2568. DOI: 10.32604/ee.2024.051231. |
[34] | RUIZ-RODRIGUEZ F J, HERNÁNDEZ J C, JURADO F. Probabilistic load flow for photovoltaic distributed generation using the Cornish-Fisher expansion[J]. Electric Power Systems Research, 2012, 89: 129-138. DOI: 10.1016/j.epsr.2012.03.009. |
[35] | HASSAN A F, BARAKAT S, REZK A. Towards a deep learning-based outlier detection approach in the context of streaming data[J]. Journal of Big Data, 2022, 9(1): 120. DOI: 10.1186/s40537-022-00670-8. |
[36] | BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[J]. SIGMOD 2000-Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000: 93-104 |
[37] | ALGHUSHAIRY O, ALSINI R, SOULE T, et al. A review of local outlier factor algorithms for outlier detection in big data streams[J]. Big Data and Cognitive Computing, 2021, 5(1): 1. DOI: 10. 3390/bdcc5010001. |
[38] | WEN S Q, ZHANG W R, SUN Y F, et al. An enhanced principal component analysis method with Savitzky-Golay filter and clustering algorithm for sensor fault detection and diagnosis[J]. Applied Energy, 2023, 337: 120862. DOI: 10.1016/j.apenergy. 2023.120862. |
[39] | KRISHNAN S R, SEELAMANTULA C S. On the selection of optimum savitzky-golay filters[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 380-391. DOI: 10.1109/TSP. 2012. 2225055. |
[40] | STALLONE A, CICONE A, MATERASSI M. New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms[J]. Scientific Reports, 2020, 10: 15161. DOI: 10.1038/s41598-020-72193-2. |
[41] | 曾进辉, 苏旨音, 肖锋, 等. 基于经验模态分解和ISSA-LSTM的短期电力负荷预测[J/OL]. 电子测量技术, 2024: 1-7. (2024-10-21). https://kns.cnki.net/kcms/detail/11.2175.TN.20241018.1837.033.html. |
ZENG J H, SU Z Y, XIAO F, et al. Short-term power load forecasting based on empirical mode decomposition and ISSA-LSTM[J/OL]. Electronic Measurement Technology, 2024: 1-7. (2024-10-21). https://kns.cnki.net/kcms/detail/11.2175.TN.2024 1018.1837.033.html. |
[1] | 谈秀雯, 李凌. 局部过热下锂电池热失控特性及其热管理研究[J]. 储能科学与技术, 2025, 14(9): 3521-3529. |
[2] | 陈峥, 胡竞元, 赵志刚, 申江卫, 夏雪磊, 魏福星. 双体系混装电池组热特性研究及风冷散热结构优化[J]. 储能科学与技术, 2025, 14(9): 3463-3475. |
[3] | 陈文艳, 贺瑞璘, 常建, 邓永红. 不同形态液态金属电极的储锂机制研究[J]. 储能科学与技术, 2025, 14(9): 3290-3300. |
[4] | 邓拓, 周海平, 刘煜, 刘畅, 李梓恺, 吴孟强. 化学气相沉积法制备硅碳负极的研究进展[J]. 储能科学与技术, 2025, 14(9): 3354-3372. |
[5] | 赵岩, 刘浩, 易宗琳, 李莉, 谢莉婧, 苏方远. FEC与VC在锂离子电池石墨负极界面行为研究[J]. 储能科学与技术, 2025, 14(9): 3249-3258. |
[6] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
[7] | 封居强, 张成知, 陈雨杭. 基于数字孪生的高精度SOC和温度联合估计方法[J]. 储能科学与技术, 2025, 14(9): 3567-3580. |
[8] | 白晓宇, 筵亚静, 张志荣, 孔令丽. 复合石墨锂离子电池性能研究[J]. 储能科学与技术, 2025, 14(9): 3259-3268. |
[9] | 张磊. 锂离子电池储能电站的运行状态监测与评估[J]. 储能科学与技术, 2025, 14(9): 3538-3540. |
[10] | 包新宇, 孔祥栋, 吕桃林, 朱志成, 韩雪冰, 来鑫, 郑岳久, 孙涛. 基于产线大数据的电池内阻预测及快速分选方法[J]. 储能科学与技术, 2025, 14(9): 3541-3551. |
[11] | 杨斌, 杨军, 徐浪, 温浩伟, 刘登锋, 阮殿波. 电容型锂离子电池的球头压痕对其安全性研究[J]. 储能科学与技术, 2025, 14(8): 3090-3099. |
[12] | 张腾, 常国峰. 基于单体特征参数差异的电池组热特性和热一致性研究[J]. 储能科学与技术, 2025, 14(8): 3194-3206. |
[13] | 高蕾, 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘. 超高功率锂离子电池脉冲性能研究[J]. 储能科学与技术, 2025, 14(8): 2942-2949. |
[14] | 徐成善, 孙烨, 杨智凯, 赵明强, 李亚伦, 冯旭宁, 王贺武, 卢兰光, 欧阳明高. 储能锂离子电池系统热失控诱发电弧研究进展[J]. 储能科学与技术, 2025, 14(8): 3037-3050. |
[15] | 李鹏举, 陈晓宇, 谢佳, 沈佳妮, 贺益君. 锂离子电池功率状态预测方法研究进展[J]. 储能科学与技术, 2025, 14(8): 3028-3036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||