[1] |
ZHAO C Y, JU S H, XUE Y, et al. China's energy transitions for carbon neutrality: Challenges and opportunities[J]. Carbon Neutrality, 2022, 1(1): 7. DOI: 10.1007/s43979-022-00010-y.
|
[2] |
WANG T Z, CAO X J, JIAO L F. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects[J]. Carbon Neutrality, 2022, 1(1): 21. DOI: 10.1007/s43979-022-00022-8.
|
[3] |
刘阳. 水电解中磁流体对流对气泡行为及两相流动特性的影响[D]. 重庆: 重庆大学, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.004181.
|
|
LIU Y. Effect of MHD convection on bubble behavior and two-phase flow characteristics in water electrolysis[D]. Chongqing: Chongqing University, 2021. DOI: 10.27670/d.cnki.gcqdu. 2021. 004181.
|
[4] |
MA T, LUTKENHAUS J L. Hydrogen power gets a boost[J]. Science, 2022, 378(6616): 138-139. DOI: 10.1126/science.ade8092.
|
[5] |
WANG H, LIN H J, CAI W T, et al. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems-A review of recent progress[J]. Journal of Alloys and Compounds, 2016, 658: 280-300. DOI: 10.1016/j.jallcom. 2015.10.090.
|
[6] |
ZÜTTEL A. Hydrogen storage methods[J]. Naturwissenschaften, 2004, 91(4): 157-172. DOI: 10.1007/s00114-004-0516-x.
|
[7] |
卢彦杉. Mg基多元储氢合金体系的热力学去稳定和循环性能研究[D]. 广州: 华南理工大学, 2017.LU Y S. Thermodynamic destabilization and cycling performance of Mg-based multicomponent hydrogen storage alloy systems[D]. Guangzhou: South China University of Technology, 2017.
|
[8] |
JEMNI A, BEN NASRALLAH S. Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor[J]. International Journal of Hydrogen Energy, 1995, 20(1): 43-52. DOI: 10.1016/0360-3199(93)E0007-8.
|
[9] |
DING W D, YANG H G, ZHAN Q. Thermodynamics and kinetics analysis of hydrogen absorption by Zr0.8Ti0.2Co alloy[J]. Fusion Science and Technology, 2024, 80(2): 205-214. DOI: 10.1080/15361055.2023.2216533.
|
[10] |
ZHAN L J, ZHOU P P, XIAO X Z, et al. Numerical simulation and experimental validation of Ti0.95Zr0.05Mn0.9Cr0.9V0.2 alloy in a metal hydride tank for high-density hydrogen storage[J]. International Journal of Hydrogen Energy, 2022, 47(91): 38655-38670. DOI: 10.1016/j.ijhydene.2022.09.043.
|
[11] |
YANG W, YE Y, CHENG H H, et al. Performance optimization of a U-tube heat exchanger type hydrogen storage reactor with a novel fin structure[J]. International Journal of Hydrogen Energy, 2024, 82: 272-280. DOI: 10.1016/j.ijhydene.2024.07.421.
|
[12] |
周登波, 吴梓彬, 叶阳, 等. 耦合相变材料的LaNi5储氢反应器性能调控研究[J]. 稀土, 2024, 45(6): 61-71.
|
|
ZHOU D B, WU Z B, YE Y, et al. Study on performance control of LaNi5 based hydrogen storage reactor coupled with phase change materials[J]. Chinese Rare Earths, 2024, 45(6): 61-71.
|
[13] |
王瀚彬, 胡帅, 毕丰雷, 等. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. DOI: 10. 11949/0438-1157.20240775.
|
|
WANG H B, HU S, BI F L, et al. Desorption performance analysis of a metal hydride reactor with novel corrugated fins based on finite element method[J]. CIESC Journal, 2025, 76(1): 221-230. DOI: 10.11949/0438-1157.20240775.
|
[14] |
LI B C, YUAN Y P, TONG L, et al. Simulation and optimization of hydrogen storage performance of a large-scale shell and tube metal hydride reactor[J]. International Journal of Hydrogen Energy, 2025, 126: 531-541. DOI: 10.1016/j.ijhydene. 2025. 04.133.
|
[15] |
CHAISE A, DE RANGO P, MARTY P, et al. Experimental and numerical study of a magnesium hydride tank[J]. International Journal of Hydrogen Energy, 2010, 35(12): 6311-6322. DOI: 10.1016/j.ijhydene.2010.03.057.
|
[16] |
CHIBANI A, MECHERI G, MEROUANI S, et al. Hydrogen charging in AX21 activated carbon-PCM-metal foam-based industrial-scale reactor: Numerical analysis[J]. International Journal of Hydrogen Energy, 2023, 48(82): 32025-32038. DOI: 10.1016/j.ijhydene.2023.03.049.
|
[17] |
BAO Z W, YANG F S, WU Z, et al. Simulation studies on heat and mass transfer in high-temperature magnesium hydride reactors[J]. Applied Energy, 2013, 112: 1181-1189. DOI: 10.1016/j.apenergy.2013.04.053.
|
[18] |
YE H, TAO Y B. A novel three-dimensional cross-arranged fin structure for performance enhancement of thermochemical heat storage[J]. Journal of Energy Storage, 2023, 61: 106828. DOI: 10.1016/j.est.2023.106828.
|
[19] |
YE Y, LU J F, DING J, et al. Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank[J]. Applied Energy, 2020, 278: 115682. DOI: 10.1016/j.apenergy.2020.115682.
|
[20] |
JEMNI A, BEN NASRALLAH S. Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor[J]. International Journal of Hydrogen Energy, 1995, 20(11): 881-891. DOI: 10.1016/0360-3199(94)00115-G.
|
[21] |
YE H, TAO Y B, CHANG H, et al. Topology optimization of fluid channels for thermal management of hydrogen storage and release processes in metal hydrides reactors[J]. International Journal of Hydrogen Energy, 2024, 60: 814-824. DOI: 10.1016/j.ijhydene.2024.02.062.
|
[22] |
MA X F, DING X, HU S Y, et al. Fast reaction behaviors of AB-type Ti-Fe-Mn hydrogen storage alloys from lattice modification and in situ formed yttrium hydride[J]. Chemical Engineering Journal, 2025, 507: 160801. DOI: 10.1016/j.cej.2025.160801.
|
[23] |
BAI X S, YANG W W, ZHANG W Y, et al. Hydrogen absorption performance of a novel cylindrical MH reactor with combined loop-type finned tube and cooling jacket heat exchanger[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28100-28115. DOI: 10.1016/j.ijhydene.2020.04.209.
|
[24] |
YE H, TAO Y B, CHANG H, et al. Structure optimization of a novel porous tree-shaped fin for improving thermochemical heat storage performance[J]. Applied Thermal Engineering, 2023, 225: 120190. DOI: 10.1016/j.applthermaleng.2023.120190.
|