储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3942-3954.doi: 10.19799/j.cnki.2095-4239.2025.0349

• 储能测试与评价 • 上一篇    下一篇

不同滥用条件下钠离子电池热失控特性试验研究

吴静云1(), 郭鹏宇2(), 黄铮1   

  1. 1.国网江苏省电力有限公司经济技术研究院,江苏 南京 210008
    2.国网江苏省电力有限公司,江苏 南京 210000
  • 收稿日期:2025-04-09 修回日期:2025-04-25 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 郭鹏宇 E-mail:673112739@qq.com;13611511237@163.com
  • 作者简介:吴静云(1989—),女,高级工程师,主要从事电力储能安全防护技术研究,E-mail:673112739@qq.com
  • 基金资助:
    国网江苏省电力公司科技项目(J2024099)

Experimental study on the thermal-runaway characteristics of sodium-ion batteries under different abuse conditions

Jingyun WU1(), Pengyu GUO2(), Zheng HUANG1   

  1. 1.State Grid Jiangsu Electric Power Company Economic and Technical Research Institute, Nanjing 210008, Jiangsu, China
    2.State Grid Jiangsu Electric Power Company, Nanjing 210000, Jiangsu, China
  • Received:2025-04-09 Revised:2025-04-25 Online:2025-10-28 Published:2025-10-20
  • Contact: Pengyu GUO E-mail:673112739@qq.com;13611511237@163.com

摘要:

本工作系统研究了大容量钠离子电池在不同滥用条件下的热失控行为及机理。采用标称容量为185 Ah的商用方形钠离子电池为研究对象,通过加热板加热和持续充电两种方式分别诱发热失控,同时监测电池的温度分布、电压变化和膨胀力演变。试验结果表明,不同滥用条件下钠离子电池热失控过程及特性存在显著差异:①加热诱发热失控表现为局部过热触发、热量由外向内扩散的特点,温度呈现不均匀分布,电池在268.61 ℃时安全阀提前开启,最高膨胀力达1213 kPa,热失控过程相对平缓,持续约820 s;②过充诱发热失控呈现电化学不稳定性累积特征,电压从3.85 V上升至4.89 V峰值后骤降,膨胀力逐渐增至2402 kPa后安全阀才开启,导致热失控更为剧烈,伴随明火,整个过程持续约6996 s,是加热热失控持续时间的8.5倍;③在温度特性方面,加热热失控最高温度可超600 ℃且分布不均,而过充热失控温度峰值超过500 ℃且变化更具突发性;④失控后物理形态上,加热条件下电池安全阀相对完整但热面出现开裂,过充条件下安全阀处严重损坏;⑤热失控开启时间对比显示,加热工况下电池仅需597 s即开始进入热失控阶段,而过充工况下电池需经过3400 s的累积才触发热失控过程,表明不同滥用条件下热失控的起始机制存在本质差异。研究结果不仅揭示了钠离子电池热失控的触发机理与演变过程,对于理解大容量钠离子电池安全特性、优化电池管理系统以及制定热失控预警策略具有重要意义。

关键词: 钠离子电池, 热失控行为, 热滥用, 电滥用

Abstract:

The thermal-runaway characteristics and mechanisms of large-capacity sodium-ion batteries (SIBs) are systematically investigated under different abuse conditions. Using commercial prismatic SIBs with a nominal capacity of 185 Ah as research objects, thermal runaway was induced by two methods: heating plate and continuous charging, while monitoring the temperature distribution, voltage changes, and expansion-force evolution. The experimental results reveal significant differences in the thermal-runaway processes and characteristics under different abuse conditions: (1) Heating-induced thermal runaway is characterized by localized overheating as the trigger, with heat diffusing from the outside to the inside, resulting in a non-uniform temperature distribution. The battery safety valve opens prematurely at 268.61 ℃, with a maximum expansion force of 1213 kPa. This process is relatively gradual, lasting approximately 820 s; (2) Overcharge-induced thermal runaway exhibits accumulative electrochemical instability, with the voltage increasing from 3.85 V to a peak of 4.89 V before plummeting. The expansion force gradually increases to 2402 kPa before the safety valve opens, resulting in more intense thermal runaway, accompanied by open flames, with the entire process lasting approximately 6996 s, which is 8.5 times longer than the duration of heating-induced thermal runaway; (3) Regarding the temperature characteristics, heating-induced thermal runaway can exceed 600 ℃ with uneven distribution, while overcharge-induced thermal runaway reaches peak temperatures exceeding 500 ℃, accompanied by more abrupt changes; (4) regarding the post-runaway physical states of the SIBs, the battery safety valve remains relatively intact under heating conditions, although with cracks appearing on the heated surface. However, the safety-valve area is severely damaged under overcharging conditions; (5) A comparison of the thermal-runaway initiation times reveals that the batteries subjected to heating begin to enter the thermal-runaway phase in just 597 s, whereas those subjected to overcharging require 3400 s of accumulation to trigger thermal runaway, indicating fundamental differences in the initiation mechanisms under different abuse conditions. These findings elucidate the triggering mechanisms and evolution processes of thermal runaway in SIBs and provide significant insights into understanding the safety characteristics of large-capacity SIBs, optimizing battery-management systems, and formulating early warning strategies for thermal runaway.

Key words: sodium-ion batteries, thermal runaway, thermal abuse, electrical abuse

中图分类号: