[1] |
李勇琦, 李志远, 闻有为, 等. 大容量钠离子电池热失控特性实验研究[J]. 储能科学与技术, 2025, 14(4): 1657-1667. DOI: 10.19799/j.cnki.2095-4239.2024.1044.
|
|
LI Y Q, LI Z Y, WEN Y W, et al. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667. DOI: 10.19799/j.cnki.2095-4239.2024.1044.
|
[2] |
闻有为, 滕安琪, 李勇琦, 等. 不同放电倍率下钠离子电池的电性能与产热行为[J]. 储能科学与技术, 2025, 14(4): 1687-1697. DOI: 10.19799/j.cnki.2095-4239.2024.1047.
|
|
WEN Y W, TENG A Q, LI Y Q, et al. Electrical performance and heat production behavior of sodium-ion batteries at different discharge rate[J]. Energy Storage Science and Technology, 2025, 14(4): 1687-1697. DOI: 10.19799/j.cnki.2095-4239. 2024. 1047.
|
[3] |
WANG G Q, PING P, PENG R Q, et al. A semi reduced-order model for multi-scale simulation of fire propagation of lithium-ion batteries in energy storage system[J]. Renewable and Sustainable Energy Reviews, 2023, 186: 113672. DOI: 10.1016/j.rser.2023.113672.
|
[4] |
WANG G Q, PING P, KONG D P, et al. Advances and challenges in thermal runaway modeling of lithium-ion batteries[J]. The Innovation, 2024, 5(4): 100624. DOI: 10.1016/j.xinn.2024.100624.
|
[5] |
张明杰, 杨凯, 刘振, 等. 钠离子电池热安全性研究进展[J]. 电池, 2025, 55(2): 368-375. DOI: 10.19535/j.1001-1579.2025.02.028.
|
|
ZHANG M J, YANG K, LIU Z, et al. Research progress in thermal safety for sodium-ion battery[J]. Battery Bimonthly, 2025, 55(2): 368-375. DOI: 10.19535/j.1001-1579.2025.02.028.
|
[6] |
YUE Y B, JIA Z Z, LI Y Q, et al. Thermal runaway hazards comparison between sodium-ion and lithium-ion batteries using accelerating rate calorimetry[J]. Process Safety and Environmental Protection, 2024, 189: 61-70. DOI: 10.1016/j.psep. 2024.06.032.
|
[7] |
FEDORYSHYNA Y, SCHAEFFLER S, SOELLNER J, et al. Quantification of venting behavior of cylindrical lithium-ion and sodium-ion batteries during thermal runaway[J]. Journal of Power Sources, 2024, 615: 235064. DOI: 10.1016/j.jpowsour. 2024. 235064.
|
[8] |
GUI Q H, XU B, YU K, et al. Comparison of NaNi1/3Fe1/3Mn1/3O2 and Na4Fe3(PO4)2(P2O7) cathode sodium-ion battery behavior under overcharging induced thermal runaway[J]. Chemical Engineering Journal, 2024, 497: 154732. DOI: 10.1016/j.cej. 2024. 154732.
|
[9] |
LI Q J, LI Y, LIU M Q, et al. Elucidating thermal decomposition kinetic mechanism of charged layered oxide cathode for sodium-ion batteries[J]. Advanced Materials, 2025, 37(10): 2415610. DOI: 10.1002/adma.202415610.
|
[10] |
RUI B, SUN S G, TAN X J, et al. Mechanical abuse and safety in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2025, 13(17): 12203-12215. DOI: 10.1039/D5TA00624D.
|
[11] |
LI Z Y, CHENG Z X, YU Y, et al. Thermal runaway comparison and assessment between sodium-ion and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2025, 193: 842-855. DOI: 10.1016/j.psep.2024.11.118.
|
[12] |
LI Z Y, YU Y, WANG J J, et al. Thermal runaway and gas venting behaviors of large-format prismatic sodium-ion battery[J]. Energy Storage Materials, 2025, 77: 104197. DOI: 10.1016/j.ensm. 2025. 104197.
|
[13] |
TENG A Q, ZHANG Y, JIANG L H, et al. Revealing the thermal stability of sodium-ion battery from material to cell level using combined thermal-gas analysis[J]. Journal of Energy Chemistry, 2025, 103: 838-849. DOI: 10.1016/j.jechem.2024.11.059.
|
[14] |
MEI W X, CHENG Z X, WANG L B, et al. Thermal hazard comparison and assessment of Li-ion battery and Na-ion battery[J]. Journal of Energy Chemistry, 2025, 102: 18-26. DOI: 10.1016/j.jechem.2024.10.036.
|