储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3934-3941.doi: 10.19799/j.cnki.2095-4239.2025.0402

• 储能测试与评价 • 上一篇    下一篇

大容量磷酸铁锂电池热失控产气燃烧速率及机理研究

张宸语1(), 梅志刚2,3, 胡明2,3,4, 王世林1, 耿学文2,3,4, 王淮斌1(), 贺徒2,3,4   

  1. 1.中国人民警察大学,河北 廊坊 065000
    2.新源智储能源发展(北京)有限公司,北京 102400
    3.电化学能源消防安全联合创新应急管理部重点实验室,北京 102400
    4.中国电力国际发展有限公司,北京 100080
  • 收稿日期:2025-04-22 修回日期:2025-05-13 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 王淮斌 E-mail:cyzhang_k@163.com;wanghuaibin@cppu.edu.cn
  • 作者简介:张宸语(2002—),女,硕士研究生,研究方向为锂离子电池热失控,E-mail:cyzhang_k@163.com
  • 基金资助:
    电化学能源消防安全联合创新应急管理部重点实验室资助项目(EES2025KF01)

Combustion characteristics and modeling of thermal runaway gases from large-capacity lithium iron phosphate batteries

Chenyu ZHANG1(), Zhigang MEI2,3, Ming HU2,3,4, Shilin WANG1, Xuewen GENG2,3,4, Huaibin WANG1(), Tu HE2,3,4   

  1. 1.China People's Police University, Langfang 065000, Hebei, China
    2.XYZ Storage Technology Co. , Ltd, Beijing 102400, China
    3.Key Laboratory of Electrochemical Energy Safety, Ministry of Emergency Management, Beijing 102400, China
    4.China Power International Development Limited, Beijing 100080, China
  • Received:2025-04-22 Revised:2025-05-13 Online:2025-10-28 Published:2025-10-20
  • Contact: Huaibin WANG E-mail:cyzhang_k@163.com;wanghuaibin@cppu.edu.cn

摘要:

针对大容量磷酸铁锂电池热失控气体引发的火灾安全隐患,本工作通过实验与数值模拟相结合的方法,系统研究了其燃烧特性及反应机理。利用燃烧速率测试仪研究了火焰传播速度与运动形态,通过Chemkin-Pro软件模拟对燃烧体系的自由基浓度变化和基元反应敏感性开展分析。结果表明,火焰形态受到当量比的影响,在富燃区形态更加稳定,火焰速度随当量比呈单峰型变化,在当量比为1.1时峰值约56.4 cm/s,此时反应放热量与自由基浓度最高,火焰传播最稳定。另外反应体系的温度与压力变化将会影响自由基浓度分布及基元反应的敏感系数,进而影响火焰传播速度,火焰传播速度呈现随温度升高而提升,随压力升高而降低的规律。研究结果为储能电站热失控气体火灾的预防、监测及应急处置提供了理论依据,对优化储能电站安全设计与火灾抑制策略具有重要参考价值。

关键词: 锂离子电池, 热失控气体, 燃烧机理, 火焰传播速度

Abstract:

To address fire hazards posed by thermal runaway gases in large-capacity lithium iron phosphate (LFP) batteries, this study combines experiments and numerical simulations to investigate combustion characteristics and reaction pathways. A combustion‐rate tester was used to measure flame propagation speed and observe flame morphology, while Chemkin-Pro simulations quantified radical concentrations and the sensitivity of elementary reactions. The flame morphology depends on the equivalence ratio and is more stable under fuel-rich conditions. Flame propagation speed shows a unimodal dependence on equivalence ratio, peaking at approximately 56.4 cm/s at ϕ = 1.1, where heat release and radical concentrations are highest and flame propagation is most stable. Variations in temperature and pressure alter radical distributions and reaction-step sensitivities, thereby affecting flame propagation speed: the speed increases with temperature and decreases with pressure. These results provide a theoretical basis for prevention, monitoring, and emergency response to thermal-runaway gas fires in energy-storage stations and inform the optimization of safety design and fire-suppression strategies for such installations.

Key words: lithium-ion battery, thermal runaway gas, combustion mechanism, flame propagation speed

中图分类号: