[1] |
WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. Innovation, 2021, 2(4): 100180. DOI: 10.1016/j.xinn.2021.100180.
|
[2] |
HAN P F, CAI Q X, ODA T, et al. Assessing the recent impact of COVID-19 on carbon emissions from China using domestic economic data[J]. Science of the Total Environment, 2021, 750: 141688. DOI: 10.1016/j.scitotenv.2020.141688.
|
[3] |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10. 1016/j.joule.2020.02.010.
|
[4] |
BUGRYNIEC P J, DAVIDSON J N, CUMMING D J, et al. Pursuing safer batteries: Thermal abuse of LiFePO4 cells[J]. Journal of Power Sources, 2019, 414: 557-568. DOI: 10.1016/j.jpowsour.2019.01.013.
|
[5] |
高飞, 杨凯, 李大贺, 等. 锂离子电池组件燃烧性及危险性评价[J]. 中国安全科学学报, 2015, 25(8): 62-67. DOI: 10.16265/j.cnki.issn 1003-3033.2015.08.010.
|
|
GAO F, YANG K, LI D H, et al. Evaluation of combustibility of lithium ion battery components and dangers they involve[J]. China Safety Science Journal, 2015, 25(8): 62-67. DOI: 10.16265/j.cnki.issn1003-3033.2015.08.010.
|
[6] |
北京市应急管理局. 丰台区"4·16"较大火灾事故调查报告[R]. 北京: 北京市应急管理局, 2021.
|
[7] |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002.
|
[8] |
WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. DOI: 10.1016/j.jpowsour.2012. 02.038.
|
[9] |
LYU P Z, LIU X J, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage[J]. Energy Storage Materials, 2020, 31: 195-220. DOI: 10.1016/j.ensm.2020.06.042.
|
[10] |
XU G J, HUANG L, LU C L, et al. Revealing the multilevel thermal safety of lithium batteries[J]. Energy Storage Materials, 2020, 31: 72-86. DOI: 10.1016/j.ensm.2020.06.004.
|
[11] |
REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. DOI: 10.1016/j.ensm.2020.10.020.
|
[12] |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009.
|
[13] |
FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: 6924. DOI: 10.1038/ncomms7924.
|
[14] |
GACHOT G, GRUGEON S, ESHETU G G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409. DOI: 10.1016/j.electacta.2012.08.016.
|
[15] |
GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-Impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186. DOI: 10.1039/c5ra05897j.
|
[16] |
BARKHOLTZ H M, PREGER Y, IVANOV S, et al. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge[J]. Journal of Power Sources, 2019, 435: 226777. DOI: 10.1016/j.jpowsour. 2019.226777.
|
[17] |
ZHANG Y, CHENG S Y, MEI W X, et al. Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis[J]. Applied Energy, 2023, 336: 120695. DOI: 10.1016/j.apenergy.2023.120695.
|
[18] |
LU T Y, CHIANG C C, WU S H, et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1083-1088. DOI: 10.1007/s10973-013-3137-9.
|
[19] |
WEN C Y, JHU C Y, WANG Y W, et al. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2[J]. Journal of Thermal Analysis and Calorimetry, 2012, 109(3): 1297-1302. DOI: 10.1007/s10973-012-2573-2.
|
[20] |
DUH Y S, THENG J H, CHEN C C, et al. Comparative study on thermal runaway of commercial 14500, 18650 and 26650 LiFePO4 batteries used in electric vehicles[J]. Journal of Energy Storage, 2020, 31: 101580. DOI: 10.1016/j.est.2020.101580.
|
[21] |
LEI B X, ZHAO W J, ZIEBERT C, et al. Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter[J]. Batteries, 2017, 3(2): 14. DOI: 10.3390/batteries3020014.
|
[22] |
KVASHA A, GUTIÉRREZ C, OSA U, et al. A comparative study of thermal runaway of commercial lithium ion cells[J]. Energy, 2018, 159: 547-557. DOI: 10.1016/j.energy.2018.06.173.
|
[23] |
TANG W, TAM W C, YUAN L M, et al. Estimation of the critical external heat leading to the failure of lithium-ion batteries[J]. Applied Thermal Engineering, 2020, 179: 115665. DOI: 10.1016/j.applthermaleng.2020.115665.
|
[24] |
王浩, 李建军, 王莉, 等. 绝热加速量热仪在锂离子电池安全性研究方面的应用[J]. 新材料产业, 2013(1): 53-58.
|
|
WANG H, LI J J, WANG L, et al. Application of adiabatic accelerating rate calorimeter in safety research of lithium ion battery[J]. Advanced Materials Industry, 2013(1): 53-58.
|
[25] |
王莉, 冯旭宁, 薛钢, 等. 锂离子电池安全性评估的ARC测试方法和数据分析[J]. 储能科学与技术, 2018, 7(6): 1261-1270. DOI: 10.12028/j.issn.2095-4239.2018.0161.
|
|
WANG L, FENG X N, XUE G, et al. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1261-1270. DOI: 10.12028/j.issn.2095-4239.2018.0161.
|
[26] |
PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89. DOI: 10.1016/j.jpowsour.2015.03.035.
|
[27] |
WANG Q S, HUANG P F, PING P, et al. Combustion behavior of lithium iron phosphate battery induced by external heat radiation[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 961-969. DOI: 10.1016/j.jlp.2016.12.002.
|
[28] |
WANG C J, ZHU Y L, GAO F, et al. Thermal runaway behavior and features of LiFePO4/graphite aged batteries under overcharge[J]. International Journal of Energy Research, 2020, 44(7): 5477-5487. DOI: 10.1002/er.5298.
|
[29] |
PEIYAN Q I, JIE Z M, JIANG D, et al. Combustion characteristics of lithium-iron-phosphate batteries with different combustion states[J]. eTransportation, 2022, 11: 100148. DOI: 10.1016/j.etran. 2021.100148.
|
[30] |
QIN P, JIA Z Z, WU J Y, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313: 118767. DOI: 10.1016/j.apenergy.2022.118767.
|
[31] |
LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: 101714. DOI: 10.1016/j.est.2020.101714.
|
[32] |
PENG Y, YANG L Z, JU X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: 120916. DOI: 10.1016/j.jhazmat.2019.120916.
|
[33] |
ZHANG Y, MEI W X, QIN P, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116928. DOI: 10.1016/j.applthermaleng.2021.116928.
|
[34] |
JIA Z Z, MIN Y Y, QIN P, et al. Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries[J]. Journal of Energy Chemistry, 2024, 89: 195-207. DOI: 10.1016/j.jechem. 2023.09.052.
|
[35] |
ZHOU Z Z, ZHOU X D, WANG D, et al. Experimental analysis of lengthwise/transversal thermal characteristics and jet flow of large-format prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2021, 195: 117244. DOI: 10.1016/j.applthermaleng. 2021.117244.
|
[36] |
LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. DOI: 10.1016/j.applthermaleng.2021.116949.
|
[37] |
MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. DOI: 10.1016/j.rser.2021.110717.
|
[38] |
WANG S P, SONG L F, LI C H, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery[J]. Journal of Energy Storage, 2023, 74: 109368. DOI: 10.1016/j.est.2023.109368.
|
[39] |
JIA Z Z, WANG S P, QIN P, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating[J]. Journal of Energy Storage, 2023, 61: 106791. DOI: 10.1016/j.est. 2023.106791.
|
[40] |
LIU Y, JU L R, JIA Z Z, et al. Experimental study on the internal pressure evolution of large-format LiFePO4 battery during thermal runaway[J]. Journal of Energy Storage, 2024, 102: 114196. DOI: 10. 1016/j.est.2024.114196.
|
[41] |
JIA Z Z, WANG S P, QIN P, et al. Investigation of gas diffusion behavior and detection of 86 Ah LiFePO4 batteries in energy storage systems during thermal runaway[J]. Process Safety and Environmental Protection, 2024, 184: 579-588. DOI: 10.1016/j.psep. 2024.01.093.
|
[42] |
CHENG Z X, WANG C D, MEI W X, et al. Thermal runaway evolution of a 280 Ah lithium-ion battery with LiFePO4 as the cathode for different heat transfer modes constructed by mechanical abuse[J]. Journal of Energy Chemistry, 2024, 93: 32-45. DOI: 10.1016/j.jechem.2024.01.073.
|
[43] |
LI Z Y, YU Y, WANG J J, et al. Thermal runaway and gas venting behaviors of large-format prismatic sodium-ion battery[J]. Energy Storage Materials, 2025, 77: 104197. DOI: 10.1016/j.ensm. 2025. 104197.
|
[44] |
LI Z Y, CHENG Z X, YU Y, et al. Thermal runaway comparison and assessment between sodium-ion and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2025, 193: 842-855. DOI: 10.1016/j.psep.2024.11.118.
|
[45] |
WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. DOI: 10.1016/j.etran.2022.100190.
|