储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3923-3933.doi: 10.19799/j.cnki.2095-4239.2025.0375

• 储能测试与评价 • 上一篇    下一篇

磷酸铁锂单体电池热失控火灾危险性

宋来丰1,2(), 郎需庆1,2, 牛鲁娜1,2, 焦金庆1,2(), 曲思凝3, 张日鹏1,2, 王青松4()   

  1. 1.化学品安全全国重点实验室,山东 青岛 266104
    2.中石化安全工程研究院有限公司,山东 青岛 266104
    3.中国石化销售股份有限公司海南石油分公司,海南 海口 571924
    4.中国科学 技术大学火灾安全全国重点实验室,安徽 合肥 230026
  • 收稿日期:2025-04-16 修回日期:2025-05-30 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 焦金庆,王青松 E-mail:songlf.qday@sinopec.com;jiaojq.qday@sinopec.com;pinew@ustc.edu.cn
  • 作者简介:宋来丰(1999—),男,硕士研究生,助理工程师,研究方向为储能消防与技术,E-mail:songlf.qday@sinopec.com
  • 基金资助:
    国家自然科学基金中车联合基金重点支持项目(U24B2072);中国石油化工集团有限公司科技部项目(323139);国家重点研发计划项目(2023YFC3011100)

Flame hazard of thermal runaway of lithium iron phosphate battery

Laifeng SONG1,2(), Xuqing LANG1,2, Luna NIU1,2, Jinqing JIAO1,2(), Sining QU3, Ripeng ZHANG1,2, Qingsong WANG4()   

  1. 1.State Key Laboratory of Chemical Safety, Qingdao 266104, Shandong, China
    2.SINOPEC Research Institute of Safety Engineering Co. , Ltd. , Qingdao 266104, Shandong, China
    3.Hainan Petroleum Branch of Sinopec Sales Co. , Ltd. , Haikou 571924, Hainan, China
    4.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2025-04-16 Revised:2025-05-30 Online:2025-10-28 Published:2025-10-20
  • Contact: Jinqing JIAO, Qingsong WANG E-mail:songlf.qday@sinopec.com;jiaojq.qday@sinopec.com;pinew@ustc.edu.cn

摘要:

在国家“双碳”目标的推动下,新能源产业快速发展,锂离子电池在储能领域得到广泛应用。但是,磷酸铁锂电池在发生热失控后会产生大量可燃气体,极易引燃发生火灾爆炸事故,需要对磷酸铁锂电池热失控火灾特性进行深入的探索。本工作以实验方式探究磷酸铁锂电池热失控火灾的危险性表现形式,开展了不同加热功率下的热失控实验,基于电池表面温度、热失控火焰形态、火焰温度、热通量、热释放速率等参数,分析了热失控火灾的危险程度。结果表明,磷酸铁锂电池热失控火焰形态分为射流火焰阶段和稳定燃烧阶段,最大火焰面积达到0.44 m2;热危害参数随着时间快速升高,在出现火焰72 s后热危害参数FED达到100,最大热释放速率峰值为304.4 kW,总燃烧热为(20.51±1.04) MJ。热失控火焰具有明显的推举现象,火灾危险性主要表现为高温热辐射以及电解液和可燃气体燃烧释放大量的热量。本研究深入分析了280 Ah磷酸铁锂电池的热失控火灾特性,为储能电站火灾事故的消防防控与应急救援提供理论支撑和指导意义。

关键词: 磷酸铁锂电池, 热失控, 火焰形态, 热通量, 热释放速率

Abstract:

Driven by the national dual-carbon goals, the rapid development of new energy industries has led to the widespread use of lithium-ion batteries in energy storage systems. However, lithium iron phosphate (LFP) batteries release large volumes of flammable gases during thermal runaway, which are highly prone to ignition and can lead to fires or explosions. This necessitates a comprehensive investigation into the thermal runaway fire characteristics of LFP batteries. This study experimentally examines the fire hazards associated with thermal runaway in LFP batteries. Thermal runaway was initiated under different external heating power levels. Key parameters such as battery surface temperature, flame morphology, flame temperature, heat flux density, and heat release rate were analyzed to assess fire risk levels. Results demonstrate that thermal runaway flames exhibit two distinct stages: jet flame phase and stable combustion phase, with a maximum flame area of 0.44 m2. Hazard parameters increased rapidly over time, reaching a fire hazard index (FED) of 100 within 72 s after flame emergence. The peak heat release rate reached 304.4 kW, and the total heat release was measured (20.51±1.04) MJ. Thermal runaway flames exhibited a noticeable lifting phenomenon, with fire hazards primarily arising from intense thermal radiation and substantial heat release due to the combustion of electrolytes and flammable gases. This study provides a comprehensive analysis of thermal runaway fire behaviors in 280 Ah LFP battery, offering theoretical support and practical guidance for fire prevention, suppression, and emergency response planning in energy storage facilities.

Key words: lithium iron phosphate battery, thermal runaway, flame morphology, heat flux density, heat release rate

中图分类号: