储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3968-3981.doi: 10.19799/j.cnki.2095-4239.2025.0318

• 储能测试与评价 • 上一篇    下一篇

基于LOF和数据时空特征的异常锂电池实时检测

刘怡青1(), 王浩2, 陆玲霞1, 李昊展2, 闫旻睿1, 于淼1()   

  1. 1.浙江大学电气工程学院,浙江 杭州 310027
    2.杭州高特电子设备股份有限公司,浙江 杭州 310023
  • 收稿日期:2025-04-01 修回日期:2025-04-29 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 于淼 E-mail:22360285@zju.edu.cn;zjuyumiao@zju.edu.cn
  • 作者简介:刘怡青(2001—),女,硕士研究生,研究方向为锂离子电池异常检测,E-mail:22360285@zju.edu.cn
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划项目(2024C01058)

Real-time abnormal-battery detection based on the local outlier factor algorithm and the spatiotemporal data features of battery cells

Yiqing LIU1(), Hao WANG2, Lingxia LU1, Haozhan LI2, Minrui YAN1, Miao YU1()   

  1. 1.College of Electrical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.Hangzhou Gold Electronic Equipment Inc. , Hangzhou 310023, Zhejiang, China
  • Received:2025-04-01 Revised:2025-04-29 Online:2025-10-28 Published:2025-10-20
  • Contact: Miao YU E-mail:22360285@zju.edu.cn;zjuyumiao@zju.edu.cn

摘要:

储能系统中的电池模组运行状态复杂,准确识别异常锂电池对于系统的安全性和稳定性至关重要。针对传统异常检测方法存在的实时性不足和对异常样本依赖性强等问题,本工作提出一种融合局部离群因子与电池运行数据时空特征的无监督异常检测方法。该方法充分考虑了电池模组内的单体一致性和运行数据的变化,无需预训练即可实现高效、实时且准确的异常锂电池识别。具体包括:设计基于Cornish-Fisher展开式的分布校正方法以计算自适应阈值;采用滑动窗口机制对储能电站采集的连续数据流进行分段处理,构建动态数据片段,以提升模型对突发异常的响应能力;利用LOF算法对窗口内的时序数据进行局部密度分析,识别密度显著偏低的离群点,实现无监督异常检测。数据集3920~3960时间段的异常检测对比实验结果表明,本方法相较于K-means聚类、隔离森林、香农熵、自编码器等方法,准确识别出了异常的电池155和电池364,检测结果与人工标注完全一致,未出现任何误报或漏检,且所需检测时间最短(平均0.0106 s),展现出优异的通用性与工程适应性。

关键词: 锂离子电池, 异常检测, 局部异常因子, 滑动窗口, 实时监控

Abstract:

Battery modules exhibit a complex status in energy storage systems, and the accurate identification of abnormal lithium-ion batteries is crucial for system safety and stability. To resolve the shortcomings of traditional anomaly detection methods, such as their insufficient real-time performance and strong dependence on abnormal samples, an unsupervised anomaly detection method that integrates the local outlier factor (LOF) algorithm with spatiotemporal features of battery-operation data is proposed. This method comprehensively explores inter-cell consistency and data variation to achieve efficient, real-time, accurate abnormal celldetection without the need for pre-training. Specifically, the method involves: designing a Cornish-Fisher expansion-based distribution correction approach to calculate thresholds; utilizing a sliding-window mechanism to segment the continuous data stream from energy storage stations into dynamic data slices, thereby improving responsiveness to sudden anomalies; and applying the LOF algorithm for the local-density analysis of time series data within each window to detect low-density outliers and enable unsupervised anomaly detection. Experimental results on the dataset from 3920 to 3960 reveal that the proposed method accurately detects abnormal cells No. 155 and No. 364. These results are fully consistent with manual labeling, with zero false positives or negatives. Furthermore, the proposed method achieves the shortest average detection time of 0.0106 seconds, outperforming traditional methods, such as K-means clustering, isolation forest, Shannon entropy, and autoencoders, thus underscoring its excellent generalizability and engineering adaptability.

Key words: lithium-ion batteries, anomaly detection, local outlier factor, sliding-window, real-time monitoring

中图分类号: