储能科学与技术

• XXXX •    

基于改进型双重深度确定性策略梯度与自适应分布式模型预测控制融合的电网侧储能系统协同优化方法

谭金龙1,2, 陈军2, 赵启2, 崔大林3, 刘永强2, 张路2   

  1. 1.重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400044
    2.国网新疆电力有限公司电力科学研究院,新疆 乌鲁木齐 830011
    3.国网新疆电力有限公司,新疆 乌鲁木齐 830002
  • 收稿日期:2025-05-20 修回日期:2025-07-07
  • 基金资助:
    国网新疆电力有限公司科技项目(5230DK230013)

A Grid-side Energy Storage System Optimization Method Based on Improved Twin Deep Deterministic Policy Gradient and Adaptive Distributed Model Predictive Control

Jin-long TAN1,2, Jun CHEN2, Qi ZHAO2, Da-lin CUI3, Yong-qiang LIU2, Lu ZHANG2   

  1. 1.State Key Laboratory of Power Transmission and Distribution Equipment and System Safety and New Technology, Chongqing University, Chongqing 400044, China
    2.Electric Power Research Institute, State Grid Xinjiang Electric Power Co. , Ltd. , Urumqi 830011, China
    3.State Grid Xinjiang Electric Power Co. , Ltd. , Urumqi 830002, China
  • Received:2025-05-20 Revised:2025-07-07

摘要:

目的为应对可再生能源并网给电网侧带来的不确定性与复杂性,解决电网侧储能系统在容量分配、运行成本及能源消纳等方面的问题,提升电网稳定性与能源消纳效率。方法融合改进的深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法与自适应分布式模型预测控制(Distributed Model Predictive Control,DMPC)方法,提出电网侧储能系统自适应协同优化策略。改进 DDPG 引入偏好体验回放和噪声调整机制以增强学习效率与探索能力,自适应 DMPC 通过分解大规模问题实现并行计算与局部优化。结果测试表明,相较于传统 DDPG 算法,该策略在电网侧储能容量分配优化、降低系统运行成本及提高可再生能源消耗率等方面效果显著。结论该策略为电网侧可再生能源储能系统的优化分配提供了创新解决方案,对保障电网稳定运行具有重要意义。

关键词: 储能系统, 协同优化, 可再生能源集成, 深度强化学习, 模型预测控制, 自适应控制

Abstract:

PurposeTo address the uncertainties and complexities brought to the grid - side by the grid connection of renewable energy, solve problems such as capacity allocation, operation cost, and energy accommodation of the grid - side energy storage system, and improve grid stability and energy accommodation efficiency.MethodBy fusing the improved Deep Deterministic Policy Gradient (DDPG) algorithm and the Adaptive Distributed Model Predictive Control (DMPC) method, an adaptive 协同 optimization strategy for the grid - side energy storage system is proposed. The improved DDPG introduces a preference experience replay and a noise adjustment mechanism to enhance learning efficiency and exploration ability. The adaptive DMPC realizes parallel computing and local optimization by decomposing large - scale problems.ResultTests show that, compared with the traditional DDPG algorithm, this strategy has remarkable effects in optimizing the capacity allocation of grid - side energy storage, reducing the system operation cost, and improving the renewable energy consumption rate.ConclusionThis strategy provides an innovative solution for the optimal allocation of the grid - side renewable energy storage system and is of great significance for ensuring the stable operation of the power grid.

Key words: Energy storage system, collaborative optimization, renewable energy integration, deep reinforcement learning, model predictive control, adaptive control

中图分类号: