储能科学与技术

• XXXX •    

全钒液流电池建模研究现状及展望

李建林1(), 梅岩竹1(), 王茜1, 姜晓霞2, 李笑竹3   

  1. 1.国家能源用户侧储能创新研发中心(北方工业大学),北京市 石景山区 100144
    2.国家电投集团w科学技术研究院有限公司,北京市 昌平区 102200
    3.新疆大学电气工程学院,新疆维吾尔自治区 乌鲁木齐市 830046
  • 收稿日期:2025-06-27 修回日期:2025-07-22
  • 通讯作者: 梅岩竹 E-mail:dkyljl@163.com;myz@163.com
  • 作者简介:李建林(1976—),男,博士,教授,储能技术,dkyljl@163.com
  • 基金资助:
    北京市自然科学基金资助项目(L242008)

Current Status of Vanadium Redox Flow Battery Modeling and Research Advances in Data-Driven Approaches

Jianlin LI1(), Yanzhu MEI1(), Qian WANG1, Xiaoxia JIANG2, Xiaozhu LI3   

  1. 1.National User-Side Energy Storage Innovation Research and Development Center(North China University of Technology), Beijing 100144, China
    2.State Power Investment Corporation Research Institute Co. , Ltd. , Changping District, Beijing 102200, China
    3.Dpartment of Electrical Engineering, Xinjiang University, Urumqi, Xinjiang Uygur Autonomous Region 830046, China
  • Received:2025-06-27 Revised:2025-07-22
  • Contact: Yanzhu MEI E-mail:dkyljl@163.com;myz@163.com

摘要:

面对可再生能源间歇性和波动性带来的挑战,电网要求储能电池具有更大容量、更高功率。全钒液流电池(Vanadium Redox Flow Battery,VRFB)作为大容量储能装置对于大规模储能的工程应用具有重要意义,其中全钒液流电池建模研究是推动电池发展应用的关键技术支撑。文章通过对近期相关文献的探讨,介绍了VRFB的工作机理,归纳总结了VRFB的等效电路模型并对其进行了对比分析,着重介绍了VRFB零维、一维、二维及三维机理模型和数据驱动模型。对于数据驱动模型,重点分析了数据驱动建模方法和数据驱动模型不确定性量化方法,介绍了新颖的机理-数据驱动模型。基于综合分析,提出了机理-数据驱动融合模型这一发展方向及其技术路线,并给出了基于PCDNN模型的实验验证。最后在总结展望部分探讨了VRFB机理和数据驱动模型的局限性,展望了VRFB模型发展趋势。本研究为VRFB建模技术在新能源储能系统中的应用的提供思路了重要的理论参考。

关键词: 全钒液流电池, 建模, 机理模型, 数据驱动, 混合模型

Abstract:

Facing the challenges of intermittent and fluctuating renewable energy, power grids demand energy storage systems with higher capacity and power output. The Vanadium Redox Flow Battery (VRFB), as a large-scale energy storage technology, plays a vital role in grid-scale applications. Modeling of VRFBs serves as a key technical foundation for their development and deployment.This paper reviews recent studies on VRFBs by introducing their working principles and summarizing various equivalent circuit models with comparative analysis. It emphasizes zero-dimensional to three-dimensional mechanistic models and data-driven approaches. For data-driven modeling, it focuses on modeling methodologies and uncertainty quantification techniques, and further introduces hybrid mechanism–data-driven models.Based on comprehensive analysis, a development path for hybrid models is proposed, and a PCDNN-based model is experimentally validated. The paper concludes with a discussion on current limitations of mechanistic and data-driven models and outlines future directions for VRFB model development. This study provides valuable theoretical support for the application of VRFB modeling in renewable energy storage systems.

Key words: Vanadium Redox Flow Battery (VRFB), Battery Modeling, Mechanistic Model, Data-Driven, Hybrid Modeling

中图分类号: