储能科学与技术

• XXXX •    

硅-石墨复合负极在多物理场视角下的相互作用机制

王世宁1,2(), 方遒1, 李叶晶4(), 王雪锋1,2,3()   

  1. 1.中国科学院物理研究所,北京 100190
    2.中国科学院大学材料科学与光电技术学院,北京 100049
    3.中国科学院大学物理科学学院,北京 100049
    4.北京科技大学,北京 100083
  • 收稿日期:2025-07-16 修回日期:2025-08-14
  • 通讯作者: 李叶晶,王雪锋 E-mail:1778556446@qq.com;liyejing@ustb.edu.cn;wxf@iphy.ac.cn
  • 作者简介:王世宁(2001—),男,硕士研究生,研究方向为基于冷冻电镜电池材料的结构表征和机理探索,E-mail:1778556446@qq.com
  • 基金资助:
    国家重点研发计划(2022YFB2502200);国家自然科学基金项目(52172257);中国博士后科学基金(2023M743739);中国博士后科学基金国家资助博士后研究人员计划(GZC20232939)

Interaction Mechanisms in Silicon-Graphite Composite Anodes from a Multi-physics Perspective

Shining WANG1,2(), Qiu FANG1, Yejing LI4(), Xuefeng WANG1,2,3()   

  1. 1.Institute of Physics, Chinese Academy of Science, Beijing 110190, China
    2.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
    3.School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    4.University Of Science & Technology Beijing, Beijing 100083, China
  • Received:2025-07-16 Revised:2025-08-14
  • Contact: Yejing LI, Xuefeng WANG E-mail:1778556446@qq.com;liyejing@ustb.edu.cn;wxf@iphy.ac.cn

摘要:

硅-石墨(Si-Gr)复合负极结合硅的高比容量与石墨的结构稳定性,被视为下一代高能量密度锂离子电池的关键负极材料。然而,硅在嵌/脱锂过程中的严重体积效应,其与石墨在物理化学性质和嵌锂机制上的显著差异,导致了复杂的内部相互作用。这些作用引发了如颗粒破碎、不稳定的固体电解质界面膜持续重构、以及离子传输动力学恶化等多尺度结构失效问题,严重制约了复合负极的商业化进程。本文从多物理场视角出发,系统性地梳理了现有硅-石墨复合负极内部的相互作用机制的研究进展,指出锂化不均匀性和机械应力的累积是限制电极性能的核心因素,为理解复合电极的失效机制提供了深刻见解,并提出未来研究应从被动地适应体积变化,转向主动地调控电极内部的应力-电化学环境,实现长寿命、高能量密度硅基负极材料。

关键词: 锂离子电池, 石墨负极, 硅负极, 作用机制, 体积膨胀

Abstract:

Silicon-Graphite (Si-Gr) composite anodes, which combine the ultra-high specific capacity of silicon with the structural stability of graphite, are regarded as a key anode material for next-generation high-energy-density lithium-ion batteries. However, the enormous volumetric change of silicon during lithiation/delithiation, coupled with the significant difference in physicochemical properties and lithiation mechanisms between Si and graphite, leads to complex internal interactions. These interactions trigger multi-scale structural failures, such as particle pulverization, continuous reconstruction of an unstable solid electrolyte interphase, and deteriorated ion transport kinetics, severely constraining commercialization of the composite anodes. From a multi-physics perspective, research concerning the interaction mechanisms within Si-Gr composite anodes is systematically reviewed. Non-uniform lithiation with the accumulation of mechanical stress is proposed as the core factors limiting electrode performance in this paper, which provides profound insights into the failure mechanisms of composite electrodes. We suggest that future research should be shifted from passively accommodating volume changes to actively regulating the internal stress-electrochemical environment to achieve long-life, high-energy-density silicon-based anode materials.

Key words: Lithium-ion battery, Graphite anode, Silicon anode, Interaction mechanism, Volume expansion

中图分类号: