储能科学与技术

• XXXX •    

均热板耦合热电制冷器的方形电池热管理系统数值研究

刘树宇1(), 罗丁2   

  1. 1.三峡大学电气与新能源学院,湖北 宜昌 443002
    2.长安大学能源与电气工程学院,陕西 西安 710018
  • 收稿日期:2025-07-28 修回日期:2025-10-12
  • 作者简介:刘树宇(2001—),男,研究生在读,从事电池热管理研究. E-mail: 488633524@qq.com
  • 基金资助:
    中国自然科学基金(52306017)

Numerical investigation of flat battery thermal management system integrated with vapor chamber and thermoelectric coolers

Shuyu LIU1(), Ding LUO2   

  1. 1.College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
    2.School of Energy and Electrical Engineering, Chang'an University, Xi'an 710018, China
  • Received:2025-07-28 Revised:2025-10-12

摘要:

方形电池因其叠片结构,在充放电过程中易产生不均匀的内部热分布,导致局部过热且散热路径长,成为热管理设计的核心难点。为保证在方形电池运行过程中温度均匀性和热稳定性建立简单、易实现的电池热管理系统,本文开发了一种耦合均热板和热电制冷器的新型电池热管理系统。此外,还建立了电池热管理系统的热-电-流体多物理场数值模型,以模拟实际操作条件并预测系统的热性能。根据数值结果,发现与传统的电池热管理系统相比,具有均热板和热电制冷器的新型电池热管理系统具有更好的热性能,方形电池内的最大温差保持在5 ℃以下。通过平衡系统的热性能和功耗,确定了最佳冷却配置,热电制冷器输入电流为0.8 A,空气对流换热系数为25 W·m-1·K-1,冷却剂质量流量为3.5 g/s。在给定的最佳条件下,方形电池的最高表面温度为25.57 ℃,温差为4.06 ℃。这项研究为方形电池的热管理系统设计提供了参考。

关键词: 电池热管理系统, 热电制冷器, 方形电池, 均热板, 数值模型, 热性能

Abstract:

Due to their laminated structure, prismatic batteries are prone to generate non-uniform internal heat distribution during charge and discharge processes, resulting in localized overheating and prolonged heat dissipation paths, which constitute a critical challenge in thermal management design. To ensure temperature homogeneity and thermal stability during the operation of prismatic cells with a simple and easily implementable battery thermal management system (BTMS), this study develops a novel BTMS that couples vapor chambers (VC) with thermoelectric coolers (TECs). Additionally, a thermal-electric-fluid multiphysics numerical model for the BTMS is established to simulate real operating conditions and predict the system's thermal performance. According to numerical results, it is found that the novel BTMS with TECs and VCs enables better thermal performance compared to the traditional BTMS, and the maximum temperature difference within prismatic batteries is maintained below 5 ℃. By balancing the system's thermal performance and power consumption, the optimal cooling configuration is identified, with a TEC input current of 0.8 A, an air convection heat transfer coefficient of 25 W·m-1·K-1, and a coolant mass flow rate of 3.5 g/s. Under the given optimal conditions, the maximum surface temperature of prismatic batteries is 25.57 ℃, with a temperature difference of 4.06 ℃. This study provides a reference for the thermal management system design of prismatic batteries.

Key words: battery thermal management system, thermoelectric cooler, prismatic battery, vapor chamber, numerical model, thermal performance

中图分类号: