储能科学与技术

• XXXX •    

共沉淀法可控制备磷酸锰铁锂正极材料研究进展

贾雨(), 陈慧, 刘梦娜, 赵曦明, 屈龙()   

  1. 重庆科技大学 化学化工学院,重庆 401331
  • 收稿日期:2025-09-19 修回日期:2025-11-14
  • 通讯作者: 屈龙 E-mail:2023205051@cqust.edu.cn;longqu@cqust.edu.cn
  • 作者简介:贾雨(2000—),女,硕士研究生,电化学储能器件以及关键材料,2023205051@cqust.edu.cn
  • 基金资助:
    国家自然科学基金(22008193)

Recent advances in a controllable synthesis of LiMnₓFe1-xPO4 cathodes via co-precipitation methods

Yu JIA(), Hui CHEN, Mengna LIU, Ximing ZHAO, Long QU()   

  1. School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
  • Received:2025-09-19 Revised:2025-11-14
  • Contact: Long QU E-mail:2023205051@cqust.edu.cn;longqu@cqust.edu.cn

摘要:

橄榄石型磷酸锰铁锂(LiMnₓFe1-xPO4, LMFP)作为下一代锂离子电池(LIBs)用正极材料,具有高能量密度、高安全性、低成本等优点。但LMFP本征电子电导率低、Li+扩散慢以及Mn3+引发的Jahn-Teller效应等关键因素制约其大规模应用。本文系统论述了工业化共沉淀法在可控制备LMFP材料的研究进展,重点探讨了以磷酸盐和草酸盐为代表的前驱体在实现原子尺度上的均匀混合与组分精确控制方面的显著优势;进一步阐述了共沉淀法与改性策略(如浓度梯度设计、碳包覆与离子掺)相结合对提升LMFP正极材料电导率与结构稳定性方面的协同作用。最后,本文强调了共沉淀法为高性能LMFP材料的可控制备提供可行方案,未来研究需致力于反应机理研究、工艺参数优化与多种策略的系统性整合,从而推动其在大规模储能系统中的商业化应用。

关键词: 锂离子电池(LIBs), 磷酸锰铁锂(LiMn?Fe1-xPO4), 正极材料, 共沉淀法

Abstract:

Olivine-type LiMnxFe1-xPO4 (0<x<1, LMFP) is considered a promising cathode material for advanced lithium-ion batteries (LIBs) owing to its advantages of low cost, high safety, and high energy density. However, LMFP exhibits low ionic and electronic conductivity. Due to the Jahn-Teller effect, a high Mn content leads to severe Mn dissolution, which significantly hinders the large-scale application of LMFP. This review systematically summarizes recent advances in a controllable synthesis of LMFP cathodes via industrial co-precipitation methods. It highlights the significant advantages of phosphate and oxalate precursors in achieving atomic-level uniform mixing and precise compositional control. Moreover, the co-precipitation method can be effectively integrated with strategies such as concentration gradient design, carbon coating, and ion doping. These modification methods can effectively enhance the electron/ion transport pathways between material particles and improve the electrical conductivity of LMFP. Finally, based on recent advances in co-precipitation methods, this review proposes several research trends toward the commercial deployment of LMFP in large-scale energy storage systems.

Key words: lithium-ion batteries(LIBs), LiMn?Fe1-xPO4, cathode material, co-precipitation method

中图分类号: