储能科学与技术 ›› 2014, Vol. 3 ›› Issue (5): 457-470.doi: 10.3969/j.issn.2095-4239.2014.05.003
于锋1,2,3, 朱明远1, 王绪根1, 王刚1,2,3, 祁佩荣1, 陈冬1, 代斌1
收稿日期:
2014-05-21
出版日期:
2014-09-01
发布日期:
2014-09-01
通讯作者:
代斌,博士,教授,博士生导师,主要研究方向为绿色化学与清洁工艺,等离子体化学与多相催化,有机合成与天然产物化学等,E-mail:db_tea@shzu.edu.cn.
作者简介:
于锋(1981--),博士,副教授,硕士生导师,主要研究方向为先进炭材料,储能材料与器件,天然产物,等离子体催化等,E-mail:yufeng05@mail.ipc.ac.an;
基金资助:
YU Feng1, ZHU Mingyuan1, WANG Xugen1, WANG Gang1,2,3, QI Peirong1, CHEN Dong1, DAI Bin1
Received:
2014-05-21
Online:
2014-09-01
Published:
2014-09-01
摘要: 每3年举行1次的国际清洁能源会议(ICCES)旨在促进国际合作和交流,为在清洁能源和能源储存领域工作的国际研究者提供一个讨论清洁能源基础研究和技术革新的论坛.本文总结了2014年4月13~16日在中国青岛召开的第二届国际清洁能源会议的学术报告情况,特别是关于清洁能源和能源存储研究的最新进展及其未来科学发展所面临的挑战和根本问题.材料与纳米技术依然是解决清洁能源利用,转换和储存的关键;具有广泛应用基础的太阳能转化,电化学能量转化与储存,光催化与环境催化依然是研究热点;同时,清洁煤及化石燃料,生物燃料和生物质转化,生物和仿生系统的能源转化正在成为新的研究热点;而氢气制备与储存,二氧化碳捕获储存与使用等体系也引起了大家的广泛兴趣和关注.本文重点评述了清洁能源领域的研究重点,进展和热点问题.
中图分类号:
于锋, 朱明远, 王绪根, 王刚, 祁佩荣, 陈冬, 代斌. 清洁能源与储能研究发展前瞻----第二届国际清洁能源会议评述[J]. 储能科学与技术, 2014, 3(5): 457-470.
YU Feng, ZHU Mingyuan, WANG Xugen, WANG Gang, QI Peirong, CHEN Dong, DAI Bin. Clean energy and energy storage research --The 2nd international conference on clean energy sciences[J]. Energy Storage Science and Technology, 2014, 3(5): 457-470.
[1] Abstracts of the 1st International Conference on Clean Energy Science(1st ICCES)[C]// Royal Society of Chemistry,Dailian,China,2011. [2] Abstracts of the 2nd International Conference on Clean Energy Science(2nd ICCES)[C]// Royal Society of Chemistry,Qingdao,China,2014. [3] Krebs F C,Fyenbo J,Jorgensen M. Product integration of compact roll-to-roll processed polymer solar cell modules:Mmethods and manufacture using flexographic printing, slot-die coating and rotary screen printing[J]. J . Mater. Chem. ,2010,20(41):8994-9001. [4] Krebs F C,Nielsen T D,Fyenbo J,Wadstrom M,Pedersen M S. Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africa" initiative[J]. Energ. Environ. Sci. ,2010,3(5):512-525. [5] Krebs F C,Espinosa N,Hösel M,Søndergaard R R,Jørgensen M. 25th Anniversary article:Rise to power-OPV-based solar parks[J]. Adv. Mater. ,2014,26(1):29-39. [6] Qu Sanyan(瞿三寅),Hua Jianli(花建丽),Tian He(田禾). New D-π-A dyes for efficient dye-sensitized solar cells[J]. Sci.China : Chem. (中国科学:化学),2012,55(5):677-697. [7] Ying W,Yang J,Wielopolski M,Moehl T,Moser J E,Comte P,Hua J,Zakeeruddin S M,Tian H,Gratzel M. New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells[J]. Chem. Sci. ,2014,5(1):206-214. [8] Hu Jinlin(胡金林),Yang Qihao(杨其浩),Chen Jing(陈静),Wang Taiya(王太亚),Lin He(林鹤),Qian Haisheng(钱海生). Synthesis and applications of mesoporous TiO 2 functional nanomaterials[J]. Prog. Chem. (化学进展),2013,25(12):2080-2092. [9] Tian J,Lv L,Wang X,Fei C,Liu X,Zhao Z,Wang Y,Cao G. Microsphere light-scattering layer assembled by ZnO nanosheets for the construction of high efficiency (>5%) quantum dots sensitized solar cells[J]. J . Phys. Chem. C ,2014. doi:10.1021/jp412525k. [10] Zhang Q,Guo X,Huang X,Huang S,Li D,Luo Y,Shen Q,Toyoda T,Meng Q. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO 2 photoelectrodes[J]. Phys. Chem. Chem. Phys. ,2011,13(10):4659-4667. [11] Ahmad S,Bessho T,Kessler F,Baranoff E,Frey J,Yi C,Gratzel M,Nazeeruddin M K. A new generation of platinum and iodine free efficient dye-sensitized solar cells[J]. Phys. Chem. Chem. Phys. ,2012,14(30):10631-10639. [12] Hou S,Cai X,Wu H,Yu X,Peng M,Yan K,Zou D. Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction[J]. Energ. Environ. Sci. ,2013,6(11):3356-3362. [13] Li Xiaohui(李晓慧),Fan Tongxiang(范同祥). Artificial photosynthesis[J]. Prog. Chem. (化学进展),2011,23(9):1841-1853. [14] Jiang Y,Li F,Zhang B,Li X,Wang X,Huang F,Sun L. Promoting the activity of catalysts for the oxidation of water with bridged dinuclear ruthenium complexes[J]. Angew. Chem. Int. Edit. ,2013,52(12):3398-3401. [15] Li F,Zhang B,Li X,Jiang Y,Chen L,Li Y,Sun L. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes[J]. Angew. Chem. Int. Edit. ,2011,50(51):12276-12279. [16] Li F,Jiang Y,Zhang B,Huang F,Gao Y,Sun L. Towards a solar fuel device:Light-driven water oxidation catalyzed by a supramolecular assembly[J]. Angew. Chem. Int. Edit. ,2012,51(10):2417-2420. [17] Shibata S,Suenobu T,Fukuzumi S. Direct synthesis of hydrogen peroxide from hydrogen and oxygen by using a water-soluble iridium complex and flavin mononucleotide[J]. Angew. Chem. Int. Edit. ,2013,52(47):12327-12331. [18] Kato S,Jung J,Suenobu T,Fukuzumi S. Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen[J]. Energ. Environ. Sci. ,2013,6(12):3756-3764. [19] Yamada Y,Yoshida S,Honda T,Fukuzumi S. Protonated iron-phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions[J]. Energ. Environ. Sci. ,2011,4(8):2822-2825. [20] Yamada Y,Yoneda M,Fukuzumi S. A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H 2 O 2 as a sustainable fuel at ambient conditions[J]. Chem. Eur. J. ,2013,19(35):11733-11741. [21] Yamada Y,Yoneda M,Fukuzumi S. High power density of one-compartment H 2 O 2 fuel cells using pyrazine-bridged Fe[MC(CN) 4 ](MC = Pt 2+ and Pd 2+ )complexes as the cathode[J]. Inorg. Chem. ,2014,53(3):1272-1274. [22] Zhou Wenli(周文理),Xie Qingji(谢青季),Lian Shixun(廉世勋). Photoelectrode materials for solar water splitting[J]. Prog. Chem. (化学进展),2013,25(12):1989-1998. [23] Yamada Y,Miyahigashi T,Kotani H,Ohkubo K,Fukuzumi S. Photocatalytic hydrogen evolution with Ni nanoparticles by using 2-phenyl-4-(1-naphthyl) quinolinium ion as a photocatalyst[J]. Energ. Environ. Sci. ,2012,5(3):6111-6118. [24] Wang W H,Hull J F,Muckerman J T,Fujita E,Himeda Y. Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure[J]. Energ. Environ. Sci. ,2012,5(7):7923-7926. [25] Tian J,Sang Y,Yu G,Jiang H,Mu X,Liu H. A Bi 2 WO 6 -based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Adv. Mater. ,2013,25(36):5075-5080. [26] Zhang Lei(章蕾),Xia Changrong(夏长荣). Low temperature solid oxide fuel cells[J]. Prog. Chem. (化学进展),2011,23(2-3):430-440. [27] Fan L,Wang C,Zhu B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy ,2012,1(4):631-639. [28] Wang X,Ma Y,Li S,Kashyout A H,Zhu B,Muhammed M. Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells[J]. J . Power Sources ,2011,196(5):2754-2758. [29] Zhu B,Raza R,Abbas G,Singh M. An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity[J]. Adv. Funct. Mater. ,2011,21(13):2465-2469. [30] Chen Lixiang(陈立香),Xiao Yong(肖勇),Zhao Feng(赵峰). Biocathodes in microbial fuel cells[J]. Prog. Chem. (化学进展),2012,24(1):157-162. [31] Garner L E,Thomas A W,Sumner J J,Harvey S P,Bazan G C. Conjugated oligoelectrolytes increase current response and organic contaminant removal in wastewater microbial fuel cells[J]. Energ. Environ. Sci. ,2012,5(11):9449-9452. [32] Hou H,Chen X,Thomas A W,Catania C,Kirchhofer N D,Garner L E,Han A,Bazan G C. Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells[J]. Adv. Mater. ,2013,25(11):1593-1597. [33] Xia L,Liang B,Li L,Tang X,Palchetti I,Mascini M,Liu A. Direct energy conversion from xylose using xylose dehydrogenase surface displayed bacteria based enzymatic biofuel cell[J]. Biosen. Bioelectron. ,2013,44:160-163. [34] Liang B,Li L,Mascin M,Liu A. Construction of xylose dehydrogenase displayed on the surface of bacteria using ice nucleation protein for sensitive d-xylose detection[J]. Anal. Chem. ,2011,84(1):275-282. [35] Huang Zheng(黄征),Chi Bo(池波),Pu Jian(蒲健),Li Jian(李箭). New development of key materials for high-performance lithium-air batteries[J]. Prog. Chem. (化学进展),2013,25(2-3):260-269. [36] Cao R,Lee J S,Liu M,Cho J. Recent progress in non-precious catalysts for metal-air batteries[J]. Adv. Energy Mater. ,2012,2(7):816-829. [37] Liang H W,Liu J W,Qian H S,Yu S H. Multiplex templating process in one-dimensional nanoscale:Controllable synthesis, macroscopic assemblies, and applications[J]. Acc. Chem. Res. ,2013,46(7):1450-1461. [38] Chen W,Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures[J]. Nanoscale ,2011,3(8):3132-3137. [39] Peng C,Zhang S,Zhou X,Chen G Z. Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors[J]. Energ. Environ. Sci. ,2010,3(10):1499-1502. [40] Yu Feng(于锋),Zhang Jingjie(张敬杰),Wang Changyin(王昌胤),Yuan Jing(袁静),Yang Yanfeng(杨岩峰),Song Guangzhi(宋广智). Crystal structure and electrochemical performance of lithium ion battery cathode materials[J]. Prog. Chem. (化学进展),2010,22(1):9-18. [41] Yu F,Ge S G,Li B,Sun G Z,Mei R G,Zheng L X. Three-dimensional porous LiFePO 4 :Design, architectures and high performance for lithium ion batteries[J]. Curr. Inorg. Chem. ,2012,2(2):194-212. [42] Kang E,Jung Y S,Kim G H,Chun J,Wiesner U,Dillon A C,Kim J K,Lee J. Highly improved rate capability for a lithium-ion battery nano-Li 4 Ti 5 O 12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Adv. Funct. Mater. ,2011,21(22):4349-4357. [43] Su D,Ahn H J,Wang G. SnO 2 @graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance[J]. Chem. Commun. ,2013,49(30):3131-3133. [44] Su D W,Ahn H J,Wang G X. Beta-MnO 2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries[J]. Npg Asia Mater. ,2013,5(11):e70. doi:10.1038/am.2013.56. [45] Zhao M Q,Liu X F,Zhang Q,Tian G L,Huang J Q,Zhu W,Wei F. Graphene/single-walled carbon nanotube hybrids:One-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano ,2012,6(12):10759-10769. [46] Yan X,Liu Y,Zhao B,Wang Z,Wang Y,Liu C J. Methanation over Ni/SiO 2 :Effect of the catalyst preparation methodologies[J]. Int. J. Hydrogen Energy ,2013,38(5):2283-2291. [47] Khare S,Dell'Amico M. An overview of conversion of residues from coal liquefaction processes[J]. Can. J. Chem. Eng. ,2013,91(10):1660-1670. [48] Hulicova-Jurcakova D,Puziy A M,Poddubnaya O I,Suárez-García F,Tascón J M D,Lu G Q. Performance of supercapacitors from phosphorus-enriched carbons[J]. J. Am. Chem. Soc. ,2009,131(14):5026-5027. [49] Jiang Hongtao(姜洪涛),Hua Wei(华炜),Ji Jianbing(计建炳). Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog. Chem. (化学进展),2013,25(5):859-868. [50] Pan X,Bao X. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts Chem. Res. ,2011,44(8):553-562. [51] Guo X,Fang G,Li G,Ma H,Fan H,Yu L,Ma C,Wu X,Deng D,Wei M,Tan D,Si R,Zhang S,Li J,Sun L,Tang Z,Pan X,Bao X. Direct nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science ,2014,344(6184):616-619. [52] Zhang Jiaren(张家仁),Deng Tianyin(邓甜音),Liu Haichao(刘海超). Catalytic production of liquid biofuels from triglyceride feedstocks and lignocellulose[J]. Prog. Chem. (化学进展),2013,25(2-3):192-208. [53] Tu Junling(涂军令),Ding Mingyue(定明月),Li Yuping(李宇萍),Wang Tiejun(王铁军),Ma Longlong(马隆龙),Li Xinjun(李新军). Development of catalysts for biofuels production from biomass via fischer-tropsch synthesis[J]. Adv. New Renew. Energy (新能源进展),2014,2(2):94-103. [54] Gong Z W,Shen H W,Wang W,Yang X B,Xie H B,Zhao Z K. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process[J]. Biotechnol. Biofuels ,2013,6:36. [55] Zhou Y J,Gao W,Rong Q,Jin G,Chu H,Liu W,Yang W,Zhu Z,Li G,Zhu G,Huang L,Zhao Z K. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J. Am. Chem. Soc. ,2012,134(6):3234-3241. [56] Zhu Z,Zhang S,Liu H,Shen H,Lin X,Yang F,Zhou Y J,Jin G,Ye M,Zou H,Zhao Z K. A multi-omic map of the lipid-producing yeast rhodosporidium toruloides[J]. Nat. Commun. ,2012,3:1112. [57] Fan J,De bruyn M,Budarin V L,Gronnow M J,Shuttleworth P S,Breeden S,Macquarrie D J,Clark J H. Direct microwave-assisted hydrothermal depolymerization of cellulose[J]. J. Am. Chem. Soc. ,2013,135(32):11728-11731. [58] Budarin V L,Shuttleworth P S,Dodson J R,Hunt A J,Lanigan B,Marriott R,Milkowski K J,Wilson A J,Breeden S W,Fan J,Sin E H K,Clark J H. Use of green chemical technologies in an integrated biorefinery[J]. Energ. Environ. Sci. ,2011,4(2):471-479. [59] Yu F,Zhang L,Zhu M,An Y,Xia L,Wang X,Dai B. Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO 4 (M=Fe, Mn, Co and Ni) for Li-ion batteries[J]. Nano Energy ,2014,3:64-79. [60] White R J,Antonio C,Budarin V L,Bergström E,Thomas-Oates J,Clark J H. Polysaccharide-derived carbons for polar analyte separations[J]. Adv. Funct. Mater. ,2010,20(11):1834-1841. [61] Balu A M,Budarin V,Shuttleworth P S,Pfaltzgraff L A,Waldron K,Luque R,Clark J H. Valorisation of orange peel residues:Waste to biochemicals and nanoporous materials[J]. ChemSusChem ,2012,5(9):1694-1697. [62] Zhang Fang(张芳),Cheng Lihua(程丽华),Xu Xinhua(徐新华),Zhang Lin(张林),Chen Huanlin(陈欢林). Technologies of microalgal harvesting and lipid extraction[J]. Prog. Chem. (化学进展),2012,24(10):2062-2072. [63] Chen M,Liu T,Chen X,Chen L,Zhang W,Wang J,Gao L,Chen Y,Peng X. Subcritical co-solvents extraction of lipid from wet microalgae pastes of nannochloropsis sp[J]. Eur. J. Lipid Sci. Tech. ,2012,114(2):205-212. [64] Chen M,Chen X,Liu T,Zhang W. Subcritical ethanol extraction of lipid from wet microalgae paste of nannochloropsis sp[J]. J. Biobased Mater. Bio. ,2011,5(3):385-389. [65] Chen L,Liu T,Zhang W,Chen X,Wang J. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion[J]. Bioresour. Technol. ,2012,111:208-214. [66] Wang H,Gao L,Chen L,Guo F, Liu T. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus[J]. Bioresour. Technol. ,2013,142:39-44. [67] Cheng P,Ji B,Gao L,Zhang W,Wang J,Liu T. The growth,lipid and hydrocarbon production of botryococcus braunii with attached cultivation[J]. Bioresour. Technol. ,2013,138:95-100. [68] Sayari A,Belmabkhout Y,Serna-Guerrero R. Flue gas treatment via CO 2 adsorption[J]. Chem. Eng. J. ,2011,171(3):760-774. [69] Sjostrom S,Krutka H. Evaluation of solid sorbents as a retrofit technology for CO 2 capture[J]. Fuel ,2010,89(6):1298-1306. [70] Sayari A,Heydari-Gorji A,Yang Y. CO 2 -Induced degradation of amine-containing adsorbents:Reaction products and pathways[J]. J. Am. Chem. Soc. ,2012,134(33):13834-13842. [71] Ahmadalinezhad A,Tailor R,Sayari A. Molecular-level insights into the oxidative degradation of grafted amines[J]. Chem. -Eur. J. ,2013,19(32):10543-10550. [72] Heydari-Gorji A,Belmabkhout Y,Sayari A. Polyethylenimine- impregnated mesoporous silica:Effect of amine loading and surface alkyl chains on CO 2 adsorption[J]. Langmuir ,2011,27(20):12411-12416. [73] Heydari-Gorji A,Yang Y,Sayari A. Effect of the pore length on CO 2 adsorption over amine-modified mesoporous silicas[J]. Energy Fuels ,2011,25(9):4206-4210. [74] Jin Zhiliang(靳治良),Qian Ling(钱玲),Lv Gongxuan(吕功煊). CO 2 chemistry-actuality and expectation[J]. Prog. Chem. (化学进展),2010,22(6):1102-1115. [75] Kuhl K.P,Cave E R,Abram D N,Jaramillo T F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energ. Environ. Sci. ,2012,5(5):7050-7059. [76] Jin F,Gao Y,Jin Y,Zhang Y,Cao J,Wei Z,Smith Jr R L. High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles[J]. Energ. Environ. Sci. ,2011,4(3):881-884. [77] Marschall R. Semiconductor composites:Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater. ,2014,24(17):2421-2440. [78] Wang X,Xu Q,Li M,Shen S,Wang X,Wang Y,Feng Z,Shi J,Han H,Li C. Photocatalytic overall water splitting promoted by an α-ββphase junction on Ga 2 O 3 [J]. Angew. Chem. Int. Edit. ,2012,51(52):13089-13092. [79] Wang P,Chen P,Kostka A,Marschall R,Wark M. Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production[J]. Chem. Mater. ,2013,25(23):4739-4745. [80] Liu Shusheng(刘淑生),Sun Lixian(孙立贤),Xu Fen(徐芬). Metal-N-H systems as hydrogen storage materials[J]. Prog. Chem. (化学进展),2008,20(2-3):280-287. [81] Adelhelm P,de Jongh P E. The impact of carbon materials on the hydrogen storage properties of light metal hydrides[J]. J . Mater. Chem. ,2011,21(8):2417-2427. [82] Yan Y,Au Y S,Rentsch D,Remhof A,de Jongh P E,Zuttel A. Reversible hydrogen storage in Mg(BH 4 ) 2 /carbon nanocomposites[J]. J. Mater. Chem. A ,2013,1(37):11177-11183. [83] Lai X Y,Halpert J E,Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications:From simple to complex systems[J]. Energ. Environ. Sci. ,2012,5(2):5604-5618. [84] Lai X Y,Li J,Korgel B A,Dong Z H,Li Z M,Su F B,Du J A,Wang D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres[J]. Angew. Chem. Int. Edit. ,2011,50(12):2738-2741. [85] Wang M,Sun Z,Yue Q,Yang J,Wang X,Deng Y,Yu C,Zhao D. An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres[J]. J. Am. Chem. Soc. ,2014,136(5):1884-1892. [86] Teng Z,Wang S,Su X,Chen G,Liu Y,Luo Z,Luo W,Tang Y,Ju H,Zhao D,Lu G. Facile synthesis of uolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels[J]. Adv. Mater. ,2014,26(22):3741-3747. [87] Na K,Jo C,Kim J,Cho K,Jung J,Seo Y,Messinger R J,Chmelka B F,Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science ,2011,333(6040):328-332. [88] Titirici M M,White R J,Falco C,Sevilla M. Black perspectives for a green future:Hydrothermal carbons for environment protection and energy storage[J]. Energ. Environ. Sci. ,2012,5(5):6796-6822. [89] Brun N,Sakaushi K,Yu L,Giebeler L,Eckert J,Titirici M M. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries[J]. Phys. Chem. Chem. Phys. ,2013,15(16):6080-6087. [90] Wohlgemuth S A,White R J,Willinger M G,Titirici M M,Antonietti M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction[J]. Green Chem. ,2012,14(5):1515-1523. |
[1] | 杜保存, 黄丽娟, 雷勇刚, 宋翀芳, 王飞. 填充床熔盐蓄热器的动态温度与应力特性[J]. 储能科学与技术, 2022, 11(7): 2141-2150. |
[2] | 陶飞跃, 王焕然, 李瑞雄, 赵静, 葛刚强, 贺新, 陈昊. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
[3] | 何聪, 鹿院卫, 宋文兵, 陈晓彤, 吴玉庭, 樊占胜. 新型相同钠离子混合熔盐相图预测及物性测量[J]. 储能科学与技术, 2021, 10(5): 1729-1734. |
[4] | 吴玉庭, 明苏布道, 张灿灿, 鹿院卫. 三元混合碳酸熔盐热物性实验研究[J]. 储能科学与技术, 2021, 10(4): 1292-1296. |
[5] | 陈曦, 刘骞, 徐江海, 龙施淳, 万忠民. 基于太阳能和朗肯循环的热电氢联供系统[J]. 储能科学与技术, 2021, 10(2): 611-616. |
[6] | 杜明俊, 敬加强, 张志贵, 李金帅, 尹然. 太阳能光热转换稠油热采关键技术[J]. 储能科学与技术, 2020, 9(S1): 62-69. |
[7] | 万倩, 何露茜, 何正斌, 伊松林. 泡沫铁/石蜡复合相变储能材料放热过程及其热量传递规律[J]. 储能科学与技术, 2020, 9(4): 1098-1104. |
[8] | 娄放, 张恒运, 解道昌, 刘俊良, 毛德文, 孙其富, 李源杰. 基于热电制冷的车用太阳能空调系统[J]. 储能科学与技术, 2020, 9(4): 1178-1185. |
[9] | 王烨, 蔺虎相, 胡悦, 王苗, 林源山. 半球形顶太阳能蓄热水箱内置错层隔板结构及运行参数优化[J]. 储能科学与技术, 2020, 9(3): 942-950. |
[10] | 刘凯, 蔡颖玲. 一种新型相变蓄热水箱应用于太阳能组合系统的实验研究[J]. 储能科学与技术, 2019, 8(6): 1230-1234. |
[11] | 张永一川, 章学来, 徐笑锋. 太阳能光伏系统冷却技术的发展进程[J]. 储能科学与技术, 2019, 8(5): 821-828. |
[12] | 王烨, 宋荣飞, 胡悦, 鲁红钰. 内置隔板开孔方式对太阳能蓄热水箱热分层的影响[J]. 储能科学与技术, 2019, 8(5): 897-903. |
[13] | 何峰, 李廷贤, 姚金煜, 王如竹. 基于相变储热的太阳能多模式采暖系统及应用[J]. 储能科学与技术, 2019, 8(2): 311-318. |
[14] | 朱闯, 铁生年, 韩红静. 影响硝酸熔盐高温稳定性的因素[J]. 储能科学与技术, 2019, 8(1): 173-179. |
[15] | 陈 虎,吴玉庭,鹿院卫,马重芳. 熔盐纳米流体的研究进展[J]. 储能科学与技术, 2018, 7(1): 48-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||