储能科学与技术 ›› 2014, Vol. 3 ›› Issue (6): 629-641.doi: 10.3969/j.issn.2095-4239.2014.04.011
王昊, 徐凯琪, 林明翔, 唐代春, 孙洋, 闫勇, 陈彬, 胡飞, 詹元杰, 陈宇阳, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2014-10-12
出版日期:
2014-11-01
发布日期:
2014-11-01
通讯作者:
黄学杰,研究员,E-mail:xjhuang@iphy.ac.cn.
作者简介:
王昊(1990--),男,博士研究生,研究方向为锂离子电池高电压正极材料,E-mail:wanghaoe_mail@163.com;
WANG Hao, XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, YAN Yong, CHEN Bin, HU Fei, ZHAN Yuanjie, CHEN Yuyang, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2014-10-12
Online:
2014-11-01
Published:
2014-11-01
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2014年8月1日至2014年9月30日上线的锂电池研究论文,共有1541篇,选择其中100篇加以评论.层状氧化物正极材料的研究工作有材料结构和表面结构分析以及表面包覆对材料充放电循环寿命的影响,尖晶石结构材料主要研究了掺杂和表面包覆的作用,磷酸铁锂的研究涉及材料充放电过程中的结构演变过程.高容量的硅基负极材料一直是研究的热点,硅负极材料嵌脱锂过程中结构和微结构的变化以及表面改性是研究重点,金属锂负极的研究受到重视,还有Sn基负极和碳负极材料的表面改性.电解液方面的研究论文包括固态电解质和液体电解质添加剂方面的,锂空气电池的研究包括Li2O2的催化分解和电解液的作用,锂硫电池的研究涉及硫和硫化锂正极的微结构的改进.电池失效分析,寿命预测合热电模型方面有多篇文章.理论模拟工作包括和硅负极材料嵌锂研究以及界面反应,除了这些以材料为主的研究之外,针对电池的原位分析,电池制造技术的研究论文也有多篇.
中图分类号:
王昊, 徐凯琪, 林明翔, 唐代春, 孙洋, 闫勇, 陈彬, 胡飞, 詹元杰, 陈宇阳, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2014.8.1--2014.9.30)[J]. 储能科学与技术, 2014, 3(6): 629-641.
WANG Hao, XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, YAN Yong, CHEN Bin, HU Fei, ZHAN Yuanjie, CHEN Yuyang, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Aug.1,2014 to Sept. 30,2014)[J]. Energy Storage Science and Technology, 2014, 3(6): 629-641.
[1] Adipranoto D S,Ishigaki T,Hoshikawa A, et al . Neutron diffraction studies on structural effect for Ni-doping in LiCo 1- x Ni x O 2 [J] . Solid State Ionics ,2014,262:92-97. [2] Qian D N,Xu B,Chi M F, et al . Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides[J] . Physical Chemistry Chemical Physics ,2014,16(28):14665-14668. [3] Cho D H,Jo C H,Cho W, et al . Effect of residual lithium compounds on layer Ni-rich Li Ni 0.7 Mn 0.3 O 2 [J] . Journal of the Electrochemical Society ,2014,161(6):A920-A926. [4] Chen Y P,Zhang Y,Wang F, et al . Improve the structure and electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode material by nano-Al 2 O 3 ultrasonic coating[J] . Journal of Alloys and Compounds ,2014,611:135-141. [5] Hayashi T,Okada J,Toda E, et al . Degradation mechanism of LiNi 0.82 Co 0.15 Al 0.03 O 2 positive electrodes of a lithium-ion battery by a long-term cycling test[J] . Journal of the Electrochemical Society ,2014,161(6):A1007-A1011. [6] YoonS J,MyungS T,Sun Y K. Low temperature electrochemical properties of Li Ni x Co y Mn 1- x - y O 2 cathode materials for lithium-ion batteries[J] . Journal of the Electrochemical Society ,2014,161(10):A1514-A1520. [7] Han S J,Qiu B,Wei Z, et al . Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material[J] . Journal of Power Sources ,2014,268:683-691. [8] Li B A,Yan H J,Ma J, et al . Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions:Towards better electrochemical performance[J] . Advanced Functional Materials ,2014,24(32):5112-5118. [9] Rowe A W,Camardese J,McCalla E, et al. High precision coulometry studies of single-phase layered compositions in the Li-Mn-Ni-O system[J] . Journal of the Electrochemical Society ,2014,161(9):A1189-A1193. [10] Yang F F,Liu Y J,Martha S K, et al . Nanoscale morphological and chemical changes of high voltage lithium manganese rich NMC composite cathodes with cycling[J] . Nano Letters ,2014,14(8):4334-4341. [11] Hao X G,Lin X K,Lu W, et al . Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn 2 O 4 ) batteries[J] . ACS Applied Materials & Interfaces ,2014,6(14):10849-10857. [12] Kumar N,Leung K,Siegel D J. Crystal surface and state of charge dependencies of electrolyte decomposition on LiMn 2 O 4 cathode[J] . Journal of the Electrochemical Society ,2014,161(8):E3059-E3065. [13] Lin H B,Zhang Y M,Rong H B, et al . Crystallographic facet-and size-controllable synthesis of spinel LiNi 0.5 Mn 1.5 O 4 with excellent cyclic stability as cathode of high voltage lithium ion battery[J] . Journal of Materials Chemistry A ,2014,2(30):11987-11995. [14] Wang J X,Zhang Q B,LiX H, et al. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn 2 O 4 electrode[J] . Physical Chemistry Chemical Physics ,2014,16(30):16021-16029. [15] Hung F Y,Yang K Y. Al-Ga coating mechanism and discharge-charge characteristics of Li-Mn-O cathode powders at 30~55 ℃[J] . Journal of Power Sources ,2014,268:7-13. [16] Chen Z J,Zhao R R,Du P, et al. Polyhedral LiNi 0.5 Mn 1.5 O 4 with excellent electrochemical properties for lithium-ion batteries[J] . Journal of Materials Chemistry A ,2014,2(32):12835-12848. [17] Jo M R,Kim Y I,Kim Y, et al . Lithium-ion transport through a tailored disordered phase on the LiNi 0.5 Mn 1.5 O 4 surface for high-power cathode materials[J] . Chem. Sus. Chem .,2014,7(8):2248-2254. [18] Paul B J,Do G X,Mathew V, et al . Effect of extended nickel doping and secondary heat treatment on the electrochemical properties of high energy spinel LiMn 1.3 Ni 0.7 O y cathode[J] . Journal of the Electrochemical Society ,2014,161(10):A1508-A1513. [19] Wang Y,Peng Q,Yang G, et al . High-stability 5 V spinel LiNi 0.5 Mn 1.5 O 4 sputtered thin film electrodes by modifying with aluminium oxide[J] . Electrochimica Acta ,2014,136:450-456. [20] Shimoda K,Sugaya H,Murakami M, et al. Characterization of bulk and surface chemical states on electrochemically cycled LiFePO 4 :A solid state NMR study[J] . Journal of the Electrochemical Society ,2014,161(6):A1012-A1018. [21] Wang J J,Chen-Wiegart Y C K,Wang J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J] . Nature Communications ,2014,doi:10.1038/ ncomms5570. [22] Kohandehghan A,Cui K,Kupsta M, et al . Nanometer-scale Sn coatings improve the performance of silicon nanowire LIB anodes[J] . Journal of Materials Chemistry A ,2014,2(29):11261-11279. [23] Lee J K,Yoon W Y,Kim B K. Kinetics of reaction products of silicon monoxide with controlled amount of Li-ion insertion at various current densities for Li-ion batteries[J] . Journal of the Electrochemical Society ,2014,161(6):A927-A933. [24] Li J C,Dudney N J,Nanda J, et al . Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes[J] . ACS Applied Materials & Interfaces ,2014,6(13):10083-10088. [25] McSweeney W,Lotty O,Glynn C, et al . The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces[J] . Electrochimica Acta ,2014,135:356-367. [26] Zhang L,Deng J W,Liu L F, et al. Hierarchically designed SiO x /SiO y bilayer nanomembranes as stable anodes for lithium ion batteries[J] . Advanced Materials ,2014,26(26):4527. [27] Nguyen C C,Song S W. Studies of lithium diffusivity of silicon-based film electrodes for rechargeable lithium batteries[J] . Journal of Electrochemical Science and Technology ,2013,4(3):108-112. [28] Li Y,Sun Y J,Xu G J, et al. Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating[J] . Journal of Materials Chemistry A ,2014,2(29):11417-11425. [29] Okubo T,Saito M,Yodoya C, et al . Effects of Li pre-doping on charge/discharge properties of Si thin flakes as a negative electrode for Li-ion batteries[J] . Solid State Ionics ,2014,262:39-42. [30] Cubuk E D,Kadras E. Theory of structural transformation in lithiated amorphous silicon[J] . Nano Letters ,2014,14(7):4065-4070. [31] Wang L F,Liu D H,Yang S Z, et al . Exotic reaction front migration and stage structure in lithiated silicon nanowires[J] . ACS Nano ,2014,8(8):8249-8254. [32] Radvanyi E,Porcher W,De Vito E, et al . Failure mechanisms of nano-silicon anodes upon cycling:An electrode porosity evolution model[J] . Physical Chemistry Chemical Physics ,2014,16(32):17142-17153. [33] Ko M,Chae S,Jeong S, et al . Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J] . ACS Nano ,2014,8(8):8591-8599. [34] Li Q Q,Wang P,Feng Q, et al . In situ TEM on the reversibility of nanosized Sn anodes during the electrochemical reaction[J] . Chemistry of Materials ,2014,26(14):4102-4108. [35] Zhang Y J,Liu X Y,Bai W Q, et al. Magnetron sputtering amorphous carbon coatings on metallic lithium:Towards promising anodes for lithium secondary batteries[J] . Journal of Power Sources ,2014,266:43-50. [36] Chen W N,Jiang H,Hu Y J, et al . Mesoporous single crystals Li 4 Ti 5 O 12 grown on rGO as high-rate anode materials for lithium-ion batteries[J] . Chemical Communications ,2014,50(64):8856-8859. [37] Takeuchi T,Kageyama H,Nakanishi K, et al . Application of graphite-solid electrolyte composite anode in all-solid-state lithium secondary battery with Li 2 S positive electrode[J] . Solid State Ionics ,2014,262:138-142. [38] Yamano A,Morishita M,Park G, et al . Development of high-capacity Li-ion batteries using phosphate-based materials and their safety evaluation[J] . Journal of the Electrochemical Society ,2014,161(6):A1094-A1099. [39] Goodman J K S,Kohl P A. Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites[J] . Journal of the Electrochemical Society ,2014,161(9):D418-D424. [40] Park K H,Lee D,Kim J, et al . Defect-free, size-tunable graphene for high-performance lithium ion battery[J] . Nano Letters ,2014,14(8):4306-4313. [41] Zheng G Y,Lee S W,Liang Z, et al . Interconnected hollow carbon nanospheres for stable lithium metal anodes[J] . Nature Nanotechnology ,2014,9(8):618-623. [42] Unemoto A,Gambe Y,Komatsu D, et al . Development of high capacity all-solid-state lithium battery using quasi-solid-state electrolyte containing tetraglyme-Li-TFSA equimolar complexes[J] . Solid State Ionics ,2014,262:765-768. [43] Yamamoto K,Yoshida R,Sato T, et al . Nano-scale simultaneous observation of Li-concentration profile and Ti-O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy[J] . Journal of Power Sources ,2014,266:414-421. [44] Cuisinier M,Cabelguen P E,Adams B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J] . Energy & Environmental Science ,2014,7(8):2697-2705. [45] Yamada Y,Usui K,Chiang C H, et al . General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes[J] . ACS Applied Materials & Interfaces ,2014,6(14):10892-10899. [46] Prabakar S J R,Jeong J,Kwak J S, et al . Enhanced electrochemical stability of graphite anodes via adsorption of reductively polymerizable dibromothiophene in lithium ion batteries[J] . Journal of the Electrochemical Society ,2014,161(6):A896-A901. [47] Lewandowski A,Kurc B,Swiderska-Mocek A, et al . Graphite LiFePO 4 lithium-ion battery working at the heat engine coolant temperature[J] . Journal of Power Sources ,2014,266:132-137. [48] Xu F,Liu C Y,Feng W F, et al . Molten salt of lithium bis(fluorosulfonyl)imide (LiFSI)-potassium bis(fluorosulfonyl) imide (KFSI) as electrolyte for the natural graphite/LiFePO 4 lithium-ion cell[J] . Electrochimica Acta ,2014,135:217-223. [49] Huang W N,Xing L D,Wang Y T, et al . 4-(Trifluoromethyl)-benzonitrile:A novel electrolyte additive for lithium nickel manganese oxide cathode of high voltage lithium ion battery[J] . Journal of Power Sources ,2014,267:560-565. [50] Vogl U,Schmitz A,Stock C, et al . Investigation of n-ethyl-2-pyrrolidone (NEP) as electrolyte additive in regard to overcharge protecting characteristics[J] . Journal of the Electrochemical Society ,2014,161(9):A1407-A1414. [51] Liu M H,Dai F,Ma Z R, et al. Improved electrolyte and its application in LiNi 1/3 Mn 1/3 Co 1/3 O 2 -graphite full cells[J] . Journal of Power Sources ,2014,268:37-44. [52] Zhu Y,Li Y,Abraham D P. Mitigating performance degradation of high-capacity lithium-ion cells with boronate-based electrolyte additives[J] . Journal of the Electrochemical Society ,2014,161(10):A1580-A1585. [53] Mun J,Yim T,Park J H, et al . Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO 2 for advanced, safe lithium-ion batteries[J] . Scientific Reports , 2014,doi:10.1038/srep05802. [54] Kalubarme R S,Park G E,Jung K N, et al . LaNi x Co 1- x O 3- δ perovskites as catalyst material for non-aqueous lithium-oxygen batteries[J] . Journal of the Electrochemical Society ,2014,161(6):A880-A889. [55] Khetan A,Pitsch H,Viswanathan V. Solvent degradation in nonaqueous Li-O 2 batteries:Oxidative stability versus h-abstraction[J] . Journal of Physical Chemistry Letters ,2014,5(14):2419-2424. [56] Kim B G,Kim S,Lee H, et al . Wisdom from the human eye:A synthetic melanin radical scavenger for improved cycle life of Li-O 2 battery[J] . Chemistry of Materials ,2014,26(16):4757-4764. [57] Trahan M J,Gunasekara I,Mukerjee S, et al . Solvent-coupled catalysis of the oxygen electrode reactions in lithium-air batteries[J] . Journal of the Electrochemical Society ,2014,161(10):A1706-A1715. [58] Zheng H,Xiao D D,Li X, et al . New insight in understanding oxygen reduction and evolution in solid-state lithium oxygen batteries using an in situ environmental scanning electron microscope[J] . Nano Letters ,2014,14(8):4245-4249. [59] Hanumantha P J,Gattu B,Velikokhatnyi O, et al. Heterostructures for improved stability of lithium sulfur batteries[J] . Journal of the Electrochemical Society ,2014,161(6):A1173-A1180. [60] Wujcik K H,Velasco-Velez J,Wu C H, et al. Fingerprinting lithium-sulfur battery reaction products by X-ray absorption spectroscopy[J] . Journal of the Electrochemical Society ,2014,161(6):A1100-A1106. [61] Li X,Li X F,Banis M N, et al . Tailoring interactions of carbon and sulfur in Li-S battery cathodes:Significant effects of carbon-heteroatom bonds[J] . Journal of Materials Chemistry A ,2014,2(32):12866-12872. [62] Wu F X,Kim H,Magasinski A, et al. Harnessing steric separation of freshly nucleated Li 2 S nanoparticles for bottom-up assembly of high-performance cathodes for lithium-sulfur and lithium-ion batteries[J] . Advanced Energy Materials ,2014,doi:10.1002/ aenm.201400196. [63] An K,Barai P,Smith K, et al. Probing the thermal implications in mechanical degradation of lithium-ion battery electrodes[J] . Journal of the Electrochemical Society ,2014,161(6):A1058-A1070. [64] Belt J R,Bernardi D M,Utgikar V. Development and use of a lithium-metal reference electrode in aging studies of lithium-ion batteries[J] . Journal of the Electrochemical Society ,2014,161(6):A1116-A1126. [65] Castaing R,Reynier Y,Dupre N, et al . Degradation diagnosis of aged Li 4 Ti 5 O 12 /LiFePO 4 batteries[J] . Journal of Power Sources ,2014,267:744-752. [66] Gu W J,Sun Z C,Wei X Z, et al . A new method of accelerated life testing based on the grey system theory for a model-based lithium-ion battery life evaluation system[J] . Journal of Power Sources ,2014,267:366-379. [67] Love C T,Virji M B V,Rocheleau R E, et al . State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic[J] . Journal of Power Sources ,2014,266:512-519. [68] Nakura K,Ariyoshi K,Ogaki F, et al . Characterization of lithium insertion electrodes:A method to measure area-specific impedance of single electrode[J] . Journal of the Electrochemical Society ,2014,161(6):A841-A846. [69] Wang W G,Chung H S H,Zhang J. Near-real-time parameter estimation of an electrical battery model with multiple time constants and SOC-dependent capacitance[J] . IEEE Transactions on Power Electronics ,2014,29(11):5905-5920. [70] Cho G Y,Choi J W,Park J H, et al . Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles[J] . International Journal of Automotive Technology ,2014,15(5):795-803. [71] Dai Y L,Cai L,White R E. Simulation and analysis of inhomogeneous degradation in large format LiMn 2 O 4 /carbon cells[J] . Journal of the Electrochemical Society ,2014,161(8):E3348-E3356. [72] Tellez H,Aguadero A,Druce J, et al . New perspectives in the surface analysis of energy materials by combined time-of-flight secondary ion mass spectrometry (ToF-SIMS) and high sensitivity low-energy ion scattering (HS-LEIS)[J] . Journal of Analytical Atomic Spectrometry ,2014,29(8):1361-1370. [73] Oh K Y,Siegel J B,Secondo L, et al . Rate dependence of swelling in lithium-ion cells[J] . Journal of Power Sources ,2014,267:197-202. [74] Balasingam B,Avvari G V,Pattipati B, et al . A robust approach to battery fuel gauging, part II:Real time capacity estimation[J] . Journal of Power Sources ,2014,269:949-961. [75] Guan T,Zuo P J,Sun S, et al . Degradation mechanism of LiCoO 2 /mesocarbon microbeads battery based on accelerated aging tests[J] . Journal of Power Sources ,2014,268:816-823. [76] Hung M H,Lin C H,Lee L C, et al . State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique[J] . Journal of Power Sources ,2014,268:861-873. [77] Stevens D A,Ying R Y,Fathi R, et al . Using high precision coulometry measurements to compare the degradation mechanisms of NMC/LMO and NMC-Only automotive scale pouch cells[J] . Journal of the Electrochemical Society ,2014,161(9):A1364-A1370. [78] Attidekou P S,Lambert S,Armstrong M, et al . A study of 40 A·h lithium ion batteries at zero percent state of charge as a function of temperature[J] . Journal of Power Sources ,2014,269:694-703. [79] Mehrotra A,Ross P N,Srinivasan V. Quantifying polarization losses in an organic liquid electrolyte/single ion conductor interface[J] . Journal of the Electrochemical Society ,2014,161(10):A1681-A1690. [80] Nagayama M,Ariyoshi K,Yamamoto Y, et al . Characterization of lithium insertion electrodes by precision dilatometer:Area-specific deformation of single electrode[J] . Journal of the Electrochemical Society ,2014,161(9):A1388-A1393. [81] Petibon R,Xia J,Burns J C, et al . Study of the consumption of vinylene carbonate in LiNi 0.33 Mn 0.33 Co 0.33 O 2 /graphite pouch cells[J] . Journal of the Electrochemical Society ,2014,161(10):A1618-A1624. [82] Waldmann T,Gorse S,Samtleben T, et al . A mechanical aging mechanism in lithium-ion batteries[J] . Journal of the Electrochemical Society ,2014,161(10):A1742-A1747. [83] Haruyama J,Sodeyama K,Han L Y, et al . Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J] . Chemistry of Materials ,2014,26(14):4248-4255. [84] Zhao S J,Kang W,Xue J M. Role of strain and concentration on the Li adsorption and diffusion properties on Ti 2 C layer[J] . Journal of Physical Chemistry C ,2014,118(27):14983-14990. [85] Garrick T R,Kanneganti K,Huang X Y, et al . Modeling volume change due to intercalation into porous electrodes[J] . Journal of the Electrochemical Society ,2014,161(8):E3297-E3301. [86] Wang B,Richardson T J,Chen G Y. Electroactive polymer fiber separators for stable and reversible overcharge protection in rechargeable lithium batteries[J] . Journal of the Electrochemical Society ,2014,161(6):A1039-A1044. [87] Yamada H,Suzuki K,Nishio K, et al . Interfacial phenomena between lithium ion conductors and cathodes[J] . Solid State Ionics ,2014,262:879-882. [88] Sodeyama K,Yamada Y,Aikawa K, et al . Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte[J] . Journal of Physical Chemistry C ,2014,118(26):14091-14097. [89] Handel P,Fauler G,Kapper K, et al . Thermal aging of electrolytes used in lithium-ion batteries:An investigation of the impact of protic impurities and different housing materials[J] . Journal of Power Sources ,2014,267:255-259. [90] Nie M,Lucht B L. Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries[J] . Journal of the Electrochemical Society ,2014,161(6):A1001-A1006. [91] Morishita M,Yamano A,Kitaoka T, et al . Polyamide-imide binder with higher adhesive property and thermal stability as positive electrode of 4V-class lithium-ion batteries[J] . Journal of the Electrochemical Society ,2014,161(6):A955-A960. [92] Kim S P,Datta D,Shenoy V B. Atomistic mechanisms of phase boundary evolution during initial lithiation of crystalline silicon[J] . Journal of Physical Chemistry C ,2014,118(31):17247-17253. [93] Nishijima M,Ootani T,Kamimura Y, et al . Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery[J] . Nature Communications ,2014,doi:10.1038/ncomms5553. [94] Bhatt M D,O'Dwyer C. The role of carbonate and sulfite additives in propylene carbonate-based electrolytes on the formation of SEI layers at graphitic Li-ion battery anodes[J] . Journal of the Electrochemical Society ,2014,161(9):A1415-A1421. [95] Klink S,Schuhmann W,Mantia F L. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes[J] . Chem. Sus. Chem .,2014,7(8):2159-2166. [96] Unocic R R,Sun X G,Sacci R L, et al . Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy[J] . Microscopy and Microanalysis ,2014,20(4):1029-1037. [97] Zier M,Scheiba F,Oswald S, et al . Lithium dendrite and solid electrolyte interphase investigation using OsO 4 [J] . Journal of Power Sources ,2014,266:198-207. [98] Okuoka S,Ogasawara Y,Suga Y, et al . A new sealed lithium-peroxide battery with a Co-doped Li 2 O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte[J] . Scientific Reports ,2014,doi:10.1038/srep05684. [99] Steiger J,Kramer D,Moenig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J] . Electrochimica Acta ,2014,136:529-536. [100] Liu Z X,Mukherjee P P. Microstructure evolution in lithium-ion battery electrode processing[J] . Journal of the Electrochemical Society ,2014,161(8):E3248-E3258. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||