[1] WU Chao, ZHU Chunbo, GE Yunwang, et al. A review on fault mechanism and diagnosis approach for Li-ion batteries[J]. Journal of Nanomaterials, 2015, 2015:1-9.
[2] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430.
[3] LIU Huaqiang, WEI Zhongbao, HE Weidong, et al. Thermal issues about li-ion batteries and recent progress in battery thermal management systems:A review[J]. Energy Conversion and Management, 2017, 150:304-330.
[4] 白恺, 李娜, 范茂松, 等. 大容量梯次利用电池储能系统工程技术路线研究[J]. 华北电力技术, 2017(3):39-45. BAI Kai, LI Na, FAN Maosong, et al. Research on the technical roadmap for engineering application of large-scale echelon use battery energy storage system[J]. North China Electric Power, 2017(3):39-45.
[5] WEN Jianwu, YU Yan, CHEN Chunhua. A review on lithium-ion batteries safety issues:existing problems and possible solutions[J]. Materials Express, 2012, 2(3):197-212.
[6] YAO Lei, WANG Zhenpo, MA Jun. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles[J]. Journal of Power Sources, 2015, 293:548-561.
[7] LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288.
[8] 陈岚, 范永清, 张谦, 等. 基于贝叶斯网络的电池管理系统故障诊断方法[J]. 电源技术, 2016, 40(7):1396-1398. CHEN Lan, FAN Yongqing, ZHANG Qian, et al. Fault diagnosis methods for battery management system based on bayesian network[J]. Chinese Journal of Power Sources, 2016, 40(7):1396-1398.
[9] CHEN Wen, CHEN Weitian, SAIF M, et al. Simultaneous fault isolation and estimation of lithium-ion batteries via synthesized design of Luenberger and learning observers[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1):290-298.
[10] 张夏枭. 空调系统中传感器故障检测与诊断方法研究[D]. 沈阳:东北大学, 2009. ZHANG Xiaxiao. Approach research of sensor fault detection and diagnosis in HVAC system[D]. Shenyang:Northeastern University, 2009.
[11] DEY S, MOHON S, PISU P, et al. Sensor fault detection, isolation, and estimation in lithium-ion batteries[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6):2141-2149.
[12] 徐佳宁, 梁栋滨, 魏国, 等. 串联电池组接触电阻故障诊断分析[J]. 电工技术学报, 2017, 32(18):106-112. XU Jianing, LIANG Dongbin, WEI Guo, et al. Series battery pack's contact resistance fault diagnosis analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(18):106-112.
[13] OFFER G J, YUFIT V, HOWEY D A, et al. Module design and fault diagnosis in electric vehicle batteries[J]. Journal of Power Sources, 2012, 206:383-392.
[14] 欧方明. 锂电池内部微短路控制方法[J]. 船电技术, 2013, 33(4):47-48. OU Fangming. Control method of the microshort-circuit in the Li-ion Battery[J]. Marine Electric & Electronic Engineering, 2013, 33(4):47-48.
[15] WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells-A review[J]. Journal of Power Sources, 2018, 384:107-124.
[16] FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267.
[17] REN Dongsheng, FENG Xuning, LU Languang, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364:328-340.
[18] YUAN Qingfeng, ZHAO Fenggang, WANG Weidong, et al. Overcharge failure investigation of lithium-ion batteries[J]. Electrochimica Acta, 2015, 178:682-688.
[19] MALEKI H, HOWARD J N. Effects of overdischarge on performance and thermal stability of a Li-ion cell[J]. Journal of Power Sources, 2006, 160(2):1395-1402.
[20] ZHENG Yong, HE Yanbing, QIAN Kun, et al. Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries[J]. RSC Advances, 2016, 6(36):30474-30483.
[21] SHU Jie, SHUI Miao, XU Dan, et al. A comparative study of overdischarge behaviors of cathode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2012, 16(2):819-824.
[22] ZHANG Shengshui. The effect of the charging protocol on the cycle life of a Li-ion battery[J]. Journal of Power Sources, 2006, 161(2):1385-1391.
[23] GAO Yang, JIANG Jiuchun, ZHANG Caiping, et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356:103-114.
[24] ANDRENACCI N, ORTENZI F, PROSINI P P, et al. Ageing effects on batteries of high discharge current rate[C]//EVS 2017-30th International Electric Vehicle Symposium and Exhibition, 2017:Landesmesse Stuttgart GmbH.
[25] JOHNSEN B, NØRREGAARD K, VIUM J H. EV Lithium-ion battery lifetime at low temperature[C]//Large Lithium Ion Battery Technology and Application Symposium, 2015:595-601.
[26] BUROW D, SERGEEVA K, CALLES S, et al. Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions[J]. Journal of Power Sources, 2016, 307:806-814.
[27] LINDGREN J, LUND P D. Effect of extreme temperatures on battery charging and performance of electric vehicles[J]. Journal of Power Sources, 2016, 328:37-45.
[28] WU M S, CHIANG P C J. High-rate capability of lithium-ion batteries after storing at elevated temperature[J]. Electrochimica Acta, 2007, 52(11):3719-3725.
[29] FENG Xuning, FANG Mou, HE Xiangming, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255(6):294-301.
[30] LEVY S C. Safety and reliability considerations for lithium batteries[J]. Journal of Power Sources, 1997, 68(1):75-77.
[31] 杨固长, 崔益秀, 周建银. 锂离子单体电池筛选方法的研究[J]. 电池工业, 2009, 14(3):152-154. YANG Guchang, CUI Yixiu, ZHOU Jianyin. Research on the selecting methods for Li-ion cells[J]. Chinese Battery Industry, 2009, 14(3):152-154.
[32] 王永琛, 倪江锋, 王海波, 等. 锂离子电池一致性分选方法[J]. 储能科学与技术, 2013, 2(5):522-527. WANG Yongchen, NI Jiangfeng, WANG Haibo, et al. Sorting methods of lithium ion batteries consistency[J]. Energy Storage Science and Technology, 2013, 2(5):522-527.
[33] HE Xiangming. A facile consistency screening approach to select cells with better performance consistency for commercial 18650 lithium ion cells[J]. International Journal of Electrochemical Science, 2017, 12(11):10239-10258.
[34] ZHENG Yuejiu, OUYANG Minggao, LU Languang, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages:part 1. Equalization based on remaining charging capacity estimation[J]. Journal of Power Sources, 2014, 247:676-686.
[35] 李娜, 白恺, 陈豪,等. 磷酸铁锂电池均衡技术综述[J]. 华北电力技术, 2012(2):60-65. LI Na, BAI Kai, CHEN Hao, et al. Summary of equalization for LiFePO4 li-ion batteries[J]. North China Electric Power, 2012(2):60-65.
[36] ZHAO Yu, ZHANG Weige, JIANG Jiuchun, et al. Analysis on inconsistency of electric bicycle battery pack[C]//Transportation Electrification Asia-Pacific. IEEE, 2014:1-5.
[37] CHEN Zeyu, XIONG Rui, TIAN Jinpeng, et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[J]. Applied Energy, 2016, 184:365-374.
[38] YANG Ruixin, XIONG Rui, HE Hongwen, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187:950-959.
[39] HE Hongwen, LIU Zhentong, HUA Yin. Adaptive extended Kalman filter based fault detection and isolation for a lithium-ion battery pack[J]. Energy Procedia, 2015, 75:1950-1955.
[40] LIU Zhentong, HE Hongwen. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy, 2017, 185:2033-2044.
[41] OUYANG Minggao, ZHANG Mingxuan, FENG Xuning, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294:272-283.
[42] GAO Wenkai, ZHENG Yuejiu, OUYANG Minggao, et al. Micro-short circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2018, doi:10.1109/TIE.2018.2838109.
[43] HONG Jichao, WANG Zhenpo, LIU Peng. Big-data-based thermal runaway prognosis of battery systems for electric vehicles[J]. Energies, 2017, 10(7):919.
[44] ZHAO Yang LIU Peng, WANG Zhenpo, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207:354-362.
[45] WANG Zhenpo, HONG Jichao, LIU Peng, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z -score for electric vehicles[J]. Applied Energy, 2017, 196:289-302
[46] SUN Zhenyu, LIU Peng, WANG Zhenpo. Real-time fault diagnosis method of battery system based on shannon entropy[J]. Energy Procedia, 2017, 105:2354-2359.
[47] Gao Z, Cheng S C, Woo W L, et al. Genetic algorithm based back-propagation neural network approach for fault diagnosis in lithium-ion battery system[C]//International Conference on Power Electronics Systems and Applications. IEEE, 2016:1-6.
[48] 古昂, 张向文. 基于RBF神经网络的动力电池故障诊断系统研究[J]. 电源技术, 2016, 40(10):1943-1945. GU Ang, ZHANG Xiangwen. Fault diagnosis system for power battery based on RBF neural network[J]. Chinese Journal of Power Sources, 2016, 40(10):1943-1945.
[49] 夏飞, 马茜, 张浩, 等. 改进D-S证据理论在电动汽车锂电池故障诊断中的应用[J]. 智能系统学报, 2017, 12(4):526-537. XIA Fei, MA Xi, ZHANG Hao, et al. Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles[J]. CAAI Transactions on Intelligent Systems, 2017, 12(4):526-537.
[50] 刘文杰, 齐国光. 基于模糊理论的电池故障诊断专家系统[J]. 吉林大学学报(信息科学版), 2005, 23(6):670-674. LIU Wenjie, QI Guoguang. Expert system for faults diagnosis of battery based on fuzzy set theory[J]. Journal of Jilin University (Information Science Edition), 2005, 23(6):670-674.
[51] FENG Xuning, PAN Yue, HE Xiangming, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18:26-39.
[52] KONG Xiandong, ZHENG Yuejiu, OUYANG Minggao, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395:358-368.
[53] XIA Bing, SHANG Yunlong, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337:1-10.
[54] PALACÍN M R, DE GUIBERT A. Batteries:Why do batteries fail?[J]. Science, 2016, 351(6273):1253292.
[55] BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3):R1-R25.
[56] WANG Qingsong, PING Ping, ZHAO Xuejuan, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224.
[57] LIN Xinfan, PEREZ H E, SIEGEL J B, et al. Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5):1745-1755.
[58] RICHARDSON R R, IRELAND P T, HOWEY D A. Battery internal temperature estimation by combined impedance and surface temperature measurement[J]. Journal of Power Sources, 2014, 265:254-261.
[59] KIM Y, MOHAN S, SIEGEL J B, et al. The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions[J]. IEEE Transactions on Control Systems Technology, 2014, 22(6):2277-2286.
[60] DEY S, BIRON Z A, TATIPAMULA S, et al. On-board thermal fault diagnosis of lithium-ion batteries for hybrid electric vehicle application[J]. IFAC Papers-Online, 2015, 48(15):389-394.
[61] DEY S, BIRON Z A, TATIPAMULA S, et al. Model-based real-time thermal fault diagnosis of Lithium-ion batteries[J]. Control Engineering Practice, 2016, 56:37-48.
[62] SUN Jinlei, WEI Guo, PEI Lei, et al. Online internal temperature estimation for lithium-ion batteries based on Kalman filter[J]. Energies, 2015, 8(5):4400-4415.
[63] ZHANG Cheng, LI Kang, DENG Jing. Real-time estimation of battery internal temperature based on a simplified thermoelectric model[J]. Journal of Power Sources, 2016, 302:146-154.
[64] DAI Haifeng, ZHU Letao, ZHU Jiangong, et al. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries[J]. Journal of Power Sources, 2015, 293:351-365.
[65] MARCICKI J, ONORI S, RIZZONI G. Nonlinear fault detection and isolation for a lithium-ion battery management system[C]//ASME 2010 Dynamic Systems and Control Conference, 2010, 1:607-614.
[66] LIU Zhentong, HE Hongwen. Model-based sensor fault diagnosis of a lithium-ion battery in electric vehicles[J]. Energies, 2015, 8(7):6509-6527.
[67] EDWARDS C, PATTON R J, SPURGEON S K. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4):541-553.
[68] ZHENG Yuejiu, HAN Xuebing, LU Languang, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles[J]. Journal of Power Sources, 2013, 223:136-146.
[69] KANG Yongzhe, DUAN Bin, SHANG Yunlong, et al. Multi-fault online detection method for series-connected battery packs[C]//Chinese Automation Congress. IEEE, 2017:235-240.
[70] LIU Zhentong, AHMED Q, RIZZONI G, et al. Fault detection and isolation for lithium-ion battery system using structural analysis and sequential residual generation[C]//ASME 2014 Dynamic Systems and Control Conference, 2014, 2:V002T36A005. |