储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1629-1640.doi: 10.19799/j.cnki.2095-4239.2020.0144
冯建文1(), 胡时光1,3, 韩 兵2, 肖映林2, 邓永红2(), 王朝阳1()
收稿日期:
2020-04-15
修回日期:
2020-04-23
出版日期:
2020-11-05
发布日期:
2020-10-28
通讯作者:
邓永红,王朝阳
E-mail:738326612@qq.com;yhdeng08@163.com;zhywang@scut.edu.cn
作者简介:
冯建文(1994—),男,硕士研究生,主要研究方向为锂金属电池电解液,E-mail:基金资助:
Jianwen FENG1(), Shiguang HU1,3, Bing HAN2, Yinglin XIAO2, Yonghong DENG2(), Chaoyang WANG1()
Received:
2020-04-15
Revised:
2020-04-23
Online:
2020-11-05
Published:
2020-10-28
Contact:
Yonghong DENG,Chaoyang WANG
E-mail:738326612@qq.com;yhdeng08@163.com;zhywang@scut.edu.cn
摘要:
锂金属电池因其极高的能量密度而受到广泛关注。然而,高活性的锂金属负极与有机电解液之间的副反应,以及不受控制的锂枝晶生长给锂金属电池带来严重的安全隐患,从而阻碍了锂金属电池的发展。锂金属表面不稳定的固态电解质界面膜(SEI)以及由此产生的不均匀锂沉积是这些问题的根源。作为锂金属电池的重要组成部分,液体电解液与锂金属负极的相容性,以及液体电解液本身的性质决定了锂金属电池的实用性。本文首先介绍了液体电解液在锂金属电池中的作用机理,然后从添加剂、导电锂盐及有机溶剂三个方面介绍了近年来与锂金属电池电解液组分调控相关的研究进展。对于液体电解液添加剂,主要介绍了成膜添加剂和调控锂沉积行为的添加剂。对于导电锂盐,主要介绍了新型锂盐、混合锂盐以及锂盐浓度调控3种策略。对于有机溶剂,主要介绍了碳酸酯类溶剂、磷酸酯类溶剂和醚类溶剂对锂金属电池的影响。结果表明,调控电解液组分可以改善锂沉积的行为以及SEI膜的组分和性质,是解决上述问题最简便、最有效的策略之一。最后,本文还展望了该领域未来的研究方向。
中图分类号:
冯建文, 胡时光, 韩 兵, 肖映林, 邓永红, 王朝阳. 锂金属电池电解液组分调控的研究进展[J]. 储能科学与技术, 2020, 9(6): 1629-1640.
Jianwen FENG, Shiguang HU, Bing HAN, Yinglin XIAO, Yonghong DENG, Chaoyang WANG. Research progress of electrolyte optimization for lithium metal batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | YE Qingqin, ZHENG Peitao, AO Xiaohu, et al. Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries[J]. Electrochimica Acta, 2019, 315: 58-66. |
3 | LIN Dingchang, LIU Yayuan, CUI Yi. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12: 194-206. |
4 | LIU Bin, ZHANG Jiguang, XU Wu. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845. |
5 | NITTA N, WU Feixiang, Jung Tae LEE, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264. |
6 | WANG Liping, WU Zhenrui, ZOU Jian, et al. Li-free cathode materials for high energy density lithium batteries[J]. Joule, 2019, 3(9): 2086-2102. |
7 | XU Kang. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
8 | XIAO Jie. How lithium dendrites form in liquid batteries[J]. Science, 2019, 366(6464): 426-427. |
9 | LIU Yayuan, LIN Dingchang, YUEN Pak Yan, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29(10): doi: 10.1002/adma.201605531. |
10 | HAN Xiaogang, GONG Yunhui, FU Kun, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
11 | LIANG Jie, CHEN Qiyuan, LIAO Xiangbiao, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(16): 6561-6566. |
12 | YANG Chunpeng, YIN Yaxia, ZHANG Shuaifeng, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6(1): doi: 10.1038/ncomms9058. |
13 | GUO Yanpeng, LI Huiqiao, ZHAI Tianyou. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Advanced Materials, 2017, 29(29): doi: 10.1002/adma.201700007. |
14 | KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. |
15 | GOODENOUGH J B, PARK Kyu Sung. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
16 | ZHANG S S. Role of LiNO3 in rechargeable lithium/sulfur battery[J]. Electrochimica Acta, 2012, 70: 344-348. |
17 | ZHANG S S. A new finding on the role of LiNO3 in lithium-sulfur battery[J]. Journal of Power Sources, 2016, 322: 99-105. |
18 | LI Weiyang, YAO Hongbin, YAN Kai, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6(1): doi: 10.1038/ncomms8436. |
19 | WANG Gang, XIONG Xunhui, XIE Dong, et al. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes[J]. Energy Storage Materials, 2019, 23: 701-706. |
20 | CHOUDHURY S, ARCHER L A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities[J]. Advanced Electronic Materials, 2016, 2(2): doi: 10.1002/aelm.201500246. |
21 | LU Yingying, TU Zhengyuan, SHU J, et al. Stable lithium electrodeposition in salt-reinforced electrolytes[J]. Journal of Power Sources, 2015, 279: 413-418. |
22 | QIAN Jiangfeng, XU Wu, BHATTACHARYA P, et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15: 135-144. |
23 | HUANG Zhimei, REN Jing, ZHANG Wang, et al. Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive[J]. Advanced Materials, 2018, 30(39): doi: 10.1002/adma.201803270. |
24 | ZHAO Qing, TU Zhengyuan, WEI Shuya, et al. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries[J]. Angewandte Chemie International Edition, 2018, 57(4): 992-996. |
25 | LI Sheng, DAI Hongliu, LI Yahui, et al. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery[J]. Energy Storage Materials, 2019, 18: 222-228. |
26 | SHI Pengcheng, ZHANG Linchao, XIANG Hongfa, et al. Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22201-22209. |
27 | ZHENG Jianming, ENGELHARD M H, MEI Donghai, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): doi: 10.1038/nenergy.2017.12. |
28 | HEINE J, HILBIG P, QI Xin, et al. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries[J]. Journal of the Electrochemical Society, 2015, 162(6): A1094-A1101. |
29 | ZHANG Xueqiang, CHENG Xinbing, CHEN Xiang, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): doi: 10.1002/adfm.201605989. |
30 | GUO Jing, WEN Zhaoyin, WU Meifen, et al. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode[J]. Electrochemistry Communications, 2015, 51: 59-63. |
31 | SU Chi Cheung, HE Meinan, AMINE R, et al. Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries[J]. Energy Storage Materials, 2019, 17: 284-292. |
32 | YANG Yang, XIONG Jian, LAI Shaobo, et al. Vinyl ethylene carbonate as an effective SEI-forming additive in carbonate-based electrolyte for lithium-metal anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6118-6125. |
33 | WAN Guojia, GUO Feihu, LI Hui, et al. Suppression of dendritic lithium growth by in situ formation of a chemically stable and mechanically strong solid electrolyte interphase[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 593-601. |
34 | LI Guoxing, GAO Yue, HE Xin, et al. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): doi: 10.1038/s41467-017-00974-x. |
35 | QIAN Yunxian, KANG Yuanyuan, HU Shiguang, et al. Mechanism study of unsaturated tripropargyl phosphate as an efficient electrolyte additive forming multifunctional interphases in lithium ion and lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10443-10451. |
36 | MA Yulin, ZHOU Zhenxin, LI Changjin, et al. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive[J]. Energy Storage Materials, 2018, 11: 197-204. |
37 | SHEN Xiaowei, JI Haoqing, LIU Jie, et al. Super lithiophilic SEI derived from quinones electrolyte to guide Li uniform deposition[J]. Energy Storage Materials, 2020, 24: 426-431. |
38 | DING Fei, XU Wu, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456. |
39 | DAI Hongliu, XI Kai, LIU Xin, et al. Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms[J]. Journal of the American Chemical Society, 2018, 140(50): 17515-17521. |
40 | NISHIKAWA K, MORI T, NISHIDA T, et al. Li dendrite growth and Li+ ionic mass transfer phenomenon[J]. Journal of Electroanalytical Chemistry, 2011, 661(1): 84-89. |
41 | XU Kang, ZHANG Sheng S, Unchul LEE, et al. LiBOB: Is it an alternative salt for lithium ion chemistry?[J]. Journal of Power Sources, 2005, 146(1): 79-85. |
42 | OH S H, YIM, POMERANTSEVA E, et al. Decomposition reaction of lithium bis(oxalato)borate in the rechargeable lithium-oxygen cell[J]. Electrochemical and Solid State Letters, 2011, 14(12): A185-A188. |
43 | ZHANG S S. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8(9): 1423-1428. |
44 | SCHEDLBAUER T, KRÜGER S, SCHMITZ R, et al. Lithium difluoro(oxalato)borate: A promising salt for lithium metal based secondary batteries?[J]. Electrochimica Acta, 2013, 92: 102-107. |
45 | AURBACH D, WEISSMAN I, ZABAN A, et al. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts[J]. Electrochimica Acta, 1994, 39(1): 51-71. |
46 | MIAO Rongrong, YANG Jun, FENG Xuejiao, et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility[J]. Journal of Power Sources, 2014, 271: 291-297. |
47 | BUDI A, BASILE A, OPLETAL G, et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19789-19797. |
48 | TONG Bo, HUANG Jun, ZHOU Zhibin, et al. The salt matters: Enhanced reversibility of Li-O2 batteries with a Li [(CF3SO2)(n-C4F9SO2)N]-based electrolyte[J]. Advanced Materials, 2018, 30(1): doi: 10.1002/adma.201704841. |
49 | XIAO Yinglin, HAN Bing, ZENG Yi, et al. New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling[J]. Advanced Energy Materials, 2020, 10(14): doi: 10.1002/aenm.201903937. |
50 | XIANG Hongfa, SHI Pengcheng, BHATTACHARYA P, et al. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes[J]. Journal of Power Sources, 2016, 318: 170-177. |
51 | JEONG Soon Ki, Hee Young SEO, KIM Dong Hak, et al. Suppression of dendritic lithium formation by using concentrated electrolyte solutions[J]. Electrochemistry Communications, 2008, 10(4): 635-638. |
52 | SUO Liumin, HU Yongsheng, LI Hong, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4(1): doi: 10.1038/ncomms2513. |
53 | SODEYAMA K, YAMADA Y, AIKAWA K, et al. Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte[J]. The Journal of Physical Chemistry C, 2014, 118(26): 14091-14097. |
54 | QIAN Jiangfeng, HENDERSON W A, XU Wu, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6(1): doi: 10.1038/ncomms7362. |
55 | FAN Xiulin, CHEN Long, JI Xiao, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem, 2018, 4(1): 174-185. |
56 | YAMADA Y, WANG Jianhui, Seongjae KO, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. |
57 | CHEN Shuru, ZHENG Jianming, YU Lu, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2(8): 1548-1558. |
58 | Taeeun YIM, PARK Min Sik, YU Ji Sang, et al. Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li-S batteries[J]. Electrochimica Acta, 2013, 107: 454-460. |
59 | FREUNBERGER S A, CHEN Yuhui, PENG Zhangquan, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. Journal of the American Chemical Society, 2011, 133(20): 8040-8047. |
60 | DING Fei, XU Wu, CHEN Xilin, et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode[J]. Journal of the Electrochemical Society, 2013, 160(10): A1894-A1901. |
61 | AURBACH D, DAROUX M, FAGUY P W, et al. Identification of surface films formed on lithium in propylene carbonate solutions[J]. Journal of the Electrochemical Society, 1987, 134(7): 1611-1620. |
62 | LU Yingying, TU Zhengyuan, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014, 13(10): 961-969. |
63 | HUANG W, WANG H, BOYLE D T, et al. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy[J]. ACS Energy Letters, 2020, 5(4): 1128-1135. |
64 | MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. ACS Energy Letters, 2017, 2(6): 1321-1326. |
65 | HU Zhenglin, ZHANG Shu, DONG Shanmu, et al. Self-stabilized solid electrolyte interface on a host-free Li-metal anode toward high areal capacity and rate utilization[J]. Chemistry of Materials, 2018, 30(12): 4039-4047. |
66 | XIAO Lifen, ZENG Ziqi, LIU Xingwei, et al. Stable Li metal anode with "ion-solvent-coordinated" nonflammable electrolyte for safe Li metal batteries[J]. ACS Energy Letters, 2019, 4(2): 483-488. |
67 | YANG Huijun, LI Qinyu, GUO Cheng, et al. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode[J]. Chemical Communications, 2018, 54(33): 4132-4135. |
68 | PARK M S, MA S B, LEE D J, et al. A highly reversible lithium metal anode[J]. Scientific Reports, 2014, 4(1): doi: 10.1038/srep03815. |
69 | WANG Lili, YE Yusheng, CHEN Nan, et al. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): doi: 10.1002/adfm.201800919. |
70 | LI Yang, WANG Xiaogang, DONG Shanmu, et al. Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries[J]. Advanced Energy Materials, 2016, 6(18): doi: 10.1002/aenm.201600751. |
71 | AURBACH D, GRANOT E. The study of electrolyte solutions based on solvents from the "glyme" family (linear polyethers) for secondary Li battery systems[J]. Electrochimica Acta, 1997, 42(4): 697-718. |
72 | CHOI Jae won, KIM Jin Kyu, CHERUVALLY Gouri, et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes[J]. Electrochimica Acta, 2007, 52(5): 2075-2082. |
73 | KIM T J, JEONG B O, KOH J Y, et al. Influence of electrolyte composition on electrochemical performance of Li-S cells[J]. Bulletin of the Korean Chemical Society, 2014, 35(5): 1299-1304. |
74 | AURBACH D, ZINIGRAD E, TELLER H, et al. Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2002, 149(10): A1267-A1277. |
75 | GOFER Y, BEN-ZION M, AURBACH D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries[J]. Journal of Power Sources, 1992, 39(2): 163-178. |
76 | XU Kang. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418. |
77 | JIAO Shuhong, REN Xiaodi, CAO Ruiguo, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746. |
78 | REN Xiaodi, ZOU Lianfeng, JIAO Shuhong, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902. |
79 | CHEN Shuru, ZHENG Jianming, MEI Donghai, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): doi: 10.1002/adma.201706102. |
80 | REN Xiaodi, CHEN Shuru, Hongkyung LEE, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem., 2018, 4(8): 1877-1892. |
81 | REN Xiaodi, ZOU Lianfeng, CAO Xia, et al. Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676. |
82 | ZHENG Jing, JI Guangbin, FAN Xiulin, et al. High-fluorinated electrolytes for Li-S batteries[J]. Advanced Energy Materials, 2019, 9(16): doi: 10.1002/aenm.201803774. |
83 | FAN Xiulin, CHEN Long, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722. |
84 | CAO Xia, REN Xiaodi, ZOU Lianfeng, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nature Energy, 2019, 4(9): 796-805. |
[1] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[2] | 石鹏, 翟喜民, 杨贺捷, 赵辰孜, 闫崇, 别晓非, 姜涛, 张强. 实用化复合锂负极研究进展[J]. 储能科学与技术, 2022, 11(6): 1725-1738. |
[3] | 房茂霖, 张英, 乔琳, 刘淑敏, 曹中琦, 张华民, 马相坤. 铁铬液流电池技术的研究进展[J]. 储能科学与技术, 2022, 11(5): 1358-1367. |
[4] | 方亮, 张凯, 周丽敏. 铝离子电池电解液的研究进展[J]. 储能科学与技术, 2022, 11(4): 1236-1245. |
[5] | 王心怡, 李维杰, 韩朝, 刘化鹍, 窦世学. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. |
[6] | 陶影, 赵铃飞, 王云晓, 曹余良, 侴术雷. 基于双盐高浓度电解液的高稳定性钠金属负极[J]. 储能科学与技术, 2022, 11(4): 1103-1109. |
[7] | 岳博文, 佟佳欢, 刘玉文, 霍锋. 离子液体电解液的模拟计算方法及应用[J]. 储能科学与技术, 2022, 11(3): 897-911. |
[8] | 甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865. |
[9] | 胡华坤, 李新丽, 薛文东, 蒋朋, 李勇. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J]. 储能科学与技术, 2022, 11(1): 379-396. |
[10] | 王子璇, 李俊成, 李金东, 易娟, 石霖, 吴旭. 废磷酸铁锂正极材料资源化回收工艺[J]. 储能科学与技术, 2022, 11(1): 45-52. |
[11] | 姚祯, 王锐, 阳雪, 张琦, 刘庆华, 王保国, 缪平. 锌铁液流电池研究现状及展望[J]. 储能科学与技术, 2022, 11(1): 78-88. |
[12] | 李伟辉, 钟兴国, 李会巧. 金属锂的钝化保护及应用[J]. 储能科学与技术, 2021, 10(3): 974-986. |
[13] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
[14] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[15] | 周琳, 杨佯, 胡勇胜. 合金电极失效机制:体积膨胀?电解液分解?[J]. 储能科学与技术, 2021, 10(3): 813-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||