储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 848-862.doi: 10.19799/j.cnki.2095-4239.2021.0164
朱鑫鑫1(), 蒋伟1, 万正威1, 赵澍1, 李泽珩1, 王利光2, 倪文斌2, 凌敏1(), 梁成都1()
收稿日期:
2021-04-17
修回日期:
2021-04-19
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
凌敏,梁成都
E-mail:22028054@zju.edu.cn;minling@zju.edu.cn;cdliang@zju.edu.cn
作者简介:
朱鑫鑫(1998—),女,硕士研究生,研究方向为固态锂硫电池,E-mail:基金资助:
Xinxin ZHU1(), Wei JIANG1, Zhengwei WAN1, Shu ZHAO1, Zeheng LI1, Liguang WANG2, Wenbin NI2, Min LING1(), Chengdu LIANG1()
Received:
2021-04-17
Revised:
2021-04-19
Online:
2021-05-05
Published:
2021-04-30
Contact:
Min LING,Chengdu LIANG
E-mail:22028054@zju.edu.cn;minling@zju.edu.cn;cdliang@zju.edu.cn
摘要:
固态锂硫(Li-S)电池通过固态电解质代替传统液态电解液体系,有望同时解决液态Li-S电池多硫化物的穿梭效应、锂金属与液态电解液的副反应、安全性能差等关键科学问题,发挥其高稳定性、高能量密度的优势。然而,固态Li-S电池在固态电解质和电极/电解质界面问题上面临着巨大挑战,本文详细介绍了硫化物固态电解质和聚合物基体电解质在Li-S电池中的研究进展,并重点分析了电极/电解质固-固界面接触问题。针对硫化物固态电解质存在的本征缺陷,阐述了改善固态电解质化学及电化学稳定性的方法;针对有机聚合物电解质,总结分析了影响其离子电导率的关键因素及提升方法。在电极/电解质界面问题方面,揭露了影响界面离子传输及界面稳定性的本征特性,并总结了近年来报道的针对正(负)极/电解质界面离子传输低的改进方法。最后指出要有针对性的解决不同种类电解质的本征缺陷,并结合科学模拟深入研究界面传输机制,在实践中对电极/电解质界面结构的合理设计,对固态Li-S电池的实用化具有重要意义。
中图分类号:
朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862.
Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 848-862.
1 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 1-16. |
2 | WANG H, ZHANG B, ZENG X, et al. 3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228588. |
3 | HONG X D, WANG R, LIU Y, et al. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries[J]. Journal of Energy Chemistry, 2020, 42(3): 144-168. |
4 | HU Y, CHEN W, LEI T, et al. Strategies toward high-loading lithium-sulfur battery[J]. Advanced Energy Materials, 2020, 10(17): doi: 10.1002/adma.202000082 |
5 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
6 | LI S, ZHANG X, CHEN H, et al. Electrocatalytic effect of 3D porous sulfur/gallium hybrid materials in lithium-sulfur batteries[J]. Electrochimica Acta, 2020, 364: doi: 10.1016/j.electacta.2020.137259. |
7 | ZHAO M, LI B Q, ZHANG X Q, et al. A perspective toward practical lithium-sulfur batteries[J]. ACS Central Science, 2020, 6(7): 1095-1104. |
8 | ZHANG X, YANG Y, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Social Reviews, 2020, 49(10): 3040-3071. |
9 | JANA M, XU R, CHENG X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries[J]. Energy & Environmental Science, 2020, 13(4): 1049-1075. |
10 | ZHAO M, LI B Q, PENG H J, et al. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities[J]. Angewandte Chemie, 2020, 59(31): 12636-12652. |
11 | ZHOU J, ZHANG D, WAN T, et al. Pomegranate-like conductive spherical composite as multifunctional cathode for high-performance lithium-sulfur battery[J]. Journal of Alloys and Compounds, 2021, 855: doi: 10.1016/j.jallcom.2020.157382. |
12 | ZHANG Q, HUANG N, HUANG Z, et al. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. Journal of Energy Chemistry, 2020, 40: 151-155. |
13 | WU B B, WANG S Y, EVANS W J, et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems[J]. Journal of Materials Chemistry A, 2016, 4(40): 15266-15280. |
14 | GU S, HUANG X, WANG Q, et al. A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(27): 13971-13975. |
15 | HAN F D, YUE J, FAN X L, et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Letters, 2016, 16(7): 4521-4527. |
16 | SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386. |
17 | JIANG W, YAN L J, ZENG X M, et al. Adhesive sulfide solid electrolyte interface for lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54876-54883. |
18 | AHMAD N, ZHOU L, FAHEEM M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21548-21558. |
19 | LI R X, LIAO K M, ZHOU W, et al. Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy[J]. Journal of Membrane Science, 2019, 582: 194-202. |
20 | ZHENG N F, BU X H, FENG P Y. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 426(6965): 428-432. |
21 | MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17(7): 918-921. |
22 | HAYASHI A, HAMA S, MORIMOTO H, et al. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479. |
23 | HAYASHI A, HAMA S, MINAMI T, et al. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J]. Electrochemistry Communications, 2003, 5(2): 111-114. |
24 | HAYASHI A, MINAMI K, UJIIE S, et al. Preparation and ionic conductivity of Li7P3S11-z glass-ceramic electrolytes[J]. Journal of Non-Crystalline Solids, 2010, 356(44-49): 2670-2673. |
25 | SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631. |
26 | MIZUNO F, HAYASHI A, TADANAGA K, et al. High lithium ion conducting glass-ceramics in the system Li2S-P2S5[J]. Solid State Ionics, 2006, 177: 2721-2725. |
27 | TACHEZ M, MALUGANI J P, MERCIER R, et al. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4[J]. Solid State Ionics, 1984, 14(3): 181-185. |
28 | LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. |
29 | KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742-A746. |
30 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
31 | BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: An affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697. |
32 | KUHN A, GERBIG O, ZHU C, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14669-14674. |
33 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.30. |
34 | KUHN A, DUPPEL V, LOTSCH B V. Tetragonal Li10GeP2S12 and Li7GePS8-exploring the Li ion dynamics in LGPS Li electrolytes[J]. Energy & Environmental Science, 2013, 6(12): 3548-3552. |
35 | RANGASAMY E, LIU Z, GOBET M, et al. An iodide-based Li7P2S8I superionic conductor[J]. Journal of the American Chemical Society, 2015, 137(4): 1384-1387. |
36 | BOULINEAU S, COURTY M, TARASCON J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X(X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ionics, 2012, 221: 1-5. |
37 | ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie, 2019, 58(26): 8681-8686. |
38 | ZHOU L D, PARK K H, SUN X Q, et al. Solvent-engineered design of argyrodite Li6PS5X(X=Cl, Br, I) solid electrolytes with high ionic conductivity[J]. ACS Energy Letters, 2019, 4(1): 265-270. |
39 | HAYASHI A, OHTOMO T, MIZUNO F, et al. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes[J]. Electrochemistry Communications, 2003, 5(8): 701-705. |
40 | XU R C, YUE J, LIU S F, et al. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): 1073-1079. |
41 | MERCIER R, MALUGANI J P, FAHYS B, et al. Superionic conduction in Li2S-P2S5-LiI-glasses[J]. Solid State Ionics, 1981, 5(10): 663-666. |
42 | UJIIE S, HAYASHI A, TATSUMISAGO M. Preparation and ionic conductivity of (100-x)(0.8Li2S·0.2P2S5)·xLiI glass-ceramic electrolytes[J]. Journal of Solid State Electrochemistry, 2013, 17(3): 675-680. |
43 | UJIIE S, HAYASHI A, TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2012, 211:42-45. |
44 | KANNO R, HATA T, KAWAMOTO Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1/2): 97-104. |
45 | NAGAO M, IMADE Y, NARISAWA H, et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte[J]. Journal of Power Sources, 2013, 222: 237-242. |
46 | NAGAO M, SUZUKI K, IMADE Y, et al. All-solid-state lithium-sulfur batteries with three-dimensional mesoporous electrode structures[J]. Journal of Power Sources, 2016, 330: 120-126. |
47 | NAGATA H, CHIKUSA Y. A lithium sulfur battery with high power density[J]. Journal of Power Sources, 2014, 264: 206-210. |
48 | OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. Characteristics of the Li2O-Li2S-P2S5 glasses synthesized by the two-step mechanical milling[J]. Journal of Non-Crystalline Solids, 2013, 364:57-61. |
49 | HAYASHI A, MURAMATSU H, OHTOMO T, et al. Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries[J]. Journal of Alloys and Compounds, 2014, 591:247-250. |
50 | AGRAWAL R C, PANDEY G P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview[J]. Journal of Physics D: Applied Physics, 2008, 41(22): doi: 10.1088/0022-3727/41/22/223001. |
51 | XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
52 | 石凯, 安德成, 贺艳兵, 等. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. |
SHI K, AN D C, HE Y B, et al. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes[J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. | |
53 | JEDDI K, GHAZNAVI M, CHEN P. A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(8): 2769-2772. |
54 | WANG Z X, HUANG B Y, HUANG H, et al. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy[J]. Electrochimica Acta, 1996, 41(9): 1443-1446. |
55 | RYU H S, AHN H J, KIM K W, et al. Discharge process of Li/PVDF/S cells at room temperature[J]. Journal of Power Sources, 2006, 153(2): 360-364. |
56 | MARMORSTEIN D, YU T H, STRIEBEL K A, et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes[J]. Journal of Power Sources, 2000, 89(2): 219-226. |
57 | 马强, 戚兴国, 容晓晖, 等. 新型固态聚合物电解质在锂硫电池中的性能研究[J]. 储能科学与技术, 2016, 5(5): 713-718. |
MA Q, QI X G, RONG X H, et al. Novel solid polymer electrolytes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 713-718. | |
58 | LIU K, LIN Y, MILLER J D, et al. Study of room temperature solid polymer electrolyte for lithium sulfur battery[J]. ECS Transactions, 2016: 209-221. |
59 | JAYATHILAKA P A, DISSANAYAKE M A, ALBINSSON I, et al. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system[J]. Electrochimica Acta, 2002, 47(20): 3257-3268. |
60 | CROCE F, PERSI L L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16): 2457-2461. |
61 | CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184. |
62 | LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. |
63 | HASSOUN J, SCROSATI B. Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications[J]. Advanced Materials, 2010, 22(45): 5198-5201. |
64 | 谭斌, 马先果, 黄心蓝, 等. PEO-LiClO4-Li4Ti5O12复合聚合物电解质性能研究[J]. 电源技术, 2013, 37(1): 74-77. |
TAN B, MA X G, HUANG X L, et al. Research on properties of PEO-LiClO4-Li4Ti5O12 composite polymer electrolyte[J]. Chinese Journal of Power Sources, 2013, 37(1): 74-77. | |
65 | 赵贝贝. 高性能锂硫电池正极碳材料和聚合物电解质研究[D]. 青岛:青岛科技大学, 2020. |
ZHAO B B. Study on cathode carbon materials and polymer electrolyte for high performance lithium-sulfur batteries[D]. Qingdao: Qingdao University of Science and Technology, 2020. | |
66 | LI X, WANG D, WANG H, et al. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22745-22753. |
67 | NAGAO M, HAYASHI A, TATSUMISAGO M. High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(19): 10015-10020. |
68 | HAN Q, LI X, SHI X, et al. Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core-shell S@BP2000 nanocomposite[J]. Journal of Materials Chemistry A, 2019, 7(8): 3895-3902. |
69 | LIN Z, LIU Z C, DUDNEY N J, et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829-2833. |
70 | WANG X L, XIA Y, XU R C, et al. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries[J]. Journal of Power Sources, 2018, 374: 107-112. |
71 | ASO K, SAKUDA A, HAYASHI A, et al. All-solid-state lithium secondary batteries using NiS-carbon fiber composite electrodes coated with Li2S-P2S5 solid electrolytes by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 686-690. |
72 | WENZEL S, LEICHTWEISS T, KRUEGER D, et al. Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
73 | WENZEL S, RANDAU S, LEICHTWEI T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407. |
74 | HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
75 | JIANG Z, LIANG T B, LIU Y, et al. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54662-54670. |
76 | XU R, HAN F, JI X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53: 958-966. |
77 | ZHANG Y, CHEN R, WANG S, et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries[J]. Energy Storage Materials, 2020, 25: 145-153. |
78 | DAI J, YANG C, WANG C, et al. Interface engineering for garnet-based solid-state lithium-metal batteries: Materials, structures, and characterization[J]. Advanced Materials, 2018, 30(48): doi: 10.1002/adma.201802068. |
79 | LONG P, XU Q, PENG G, et al. NiS nanorods as cathode materials for all-solid-state lithium batteries with excellent rate capability and cycling stability[J]. Chemelectrochem, 2016, 3(5): 764-769. |
80 | SUN F, DONG K, OSENBERG M, et al. Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction[J]. Journal of Materials Chemistry A, 2018, 6(45): 22489-22496. |
81 | KANNO R, MURAYAMA M, INADA T, et al. A self-assembled breathing interface for all-solid-state ceramic lithium batteries[J]. Electrochemical and Solid State Letters, 2004, 7(12): A455-A458. |
82 | KOBAYASHI T, YAMADA A, KANNO R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON[J]. Electrochimica Acta, 2008, 53(15): 5045-5050. |
83 | SAKUMA M, SUZUKI K, HIRAYAMA M, et al. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M(M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics, 2016, 285: 101-105. |
84 | WU J, LIU S, HAN F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): doi: 10.1002/adma.202000751. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[4] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[5] | 苏少鹏, 李进, 张佃平, 李严, 席文, 李杨. 红柳基锂电池负极材料的制备及电化学性能[J]. 储能科学与技术, 2021, 10(6): 2082-2089. |
[6] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[7] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
[8] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[9] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[10] | 杨春燕, 马云龙, 冯小琼, 张世英, 安长胜, 李劲风. 碳基材料在铝离子电池中的研究进展[J]. 储能科学与技术, 2021, 10(2): 432-439. |
[11] | 翟亭亭, 韩忠刚, 袁泽明, 张羊换. 球磨时间对TiFe系合金微观结构和电化学性能的影响[J]. 储能科学与技术, 2021, 10(1): 163-169. |
[12] | 王瑨, 王建全, 阮殿波, 谢皎, 杨斌. 硅/活性炭复合材料的制备及其电化学性能[J]. 储能科学与技术, 2021, 10(1): 104-110. |
[13] | 王继贤, 彭思侃, 南文争, 陈翔, 王晨, 燕绍九, 戴圣龙. 喷雾干燥法制备石墨烯包覆富锂锰基材料Li1.22Mn0.52Ni0.26O2及其电化学性质[J]. 储能科学与技术, 2021, 10(1): 111-117. |
[14] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[15] | 朱佳静, 高筠. Water-in-salt电解液研究进展[J]. 储能科学与技术, 2020, 9(S1): 13-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||