储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 848-862.doi: 10.19799/j.cnki.2095-4239.2021.0164
        
               		朱鑫鑫1( ), 蒋伟1, 万正威1, 赵澍1, 李泽珩1, 王利光2, 倪文斌2, 凌敏1(
), 蒋伟1, 万正威1, 赵澍1, 李泽珩1, 王利光2, 倪文斌2, 凌敏1( ), 梁成都1(
), 梁成都1( )
)
                  
        
        
        
        
    
收稿日期:2021-04-17
									
				
											修回日期:2021-04-19
									
				
									
				
											出版日期:2021-05-05
									
				
											发布日期:2021-04-30
									
			通讯作者:
					凌敏,梁成都
											E-mail:22028054@zju.edu.cn;minling@zju.edu.cn;cdliang@zju.edu.cn
												作者简介:朱鑫鑫(1998—),女,硕士研究生,研究方向为固态锂硫电池,E-mail:基金资助:
        
               		Xinxin ZHU1( ), Wei JIANG1, Zhengwei WAN1, Shu ZHAO1, Zeheng LI1, Liguang WANG2, Wenbin NI2, Min LING1(
), Wei JIANG1, Zhengwei WAN1, Shu ZHAO1, Zeheng LI1, Liguang WANG2, Wenbin NI2, Min LING1( ), Chengdu LIANG1(
), Chengdu LIANG1( )
)
			  
			
			
			
                
        
    
Received:2021-04-17
									
				
											Revised:2021-04-19
									
				
									
				
											Online:2021-05-05
									
				
											Published:2021-04-30
									
			Contact:
					Min LING,Chengdu LIANG   
											E-mail:22028054@zju.edu.cn;minling@zju.edu.cn;cdliang@zju.edu.cn
												摘要:
固态锂硫(Li-S)电池通过固态电解质代替传统液态电解液体系,有望同时解决液态Li-S电池多硫化物的穿梭效应、锂金属与液态电解液的副反应、安全性能差等关键科学问题,发挥其高稳定性、高能量密度的优势。然而,固态Li-S电池在固态电解质和电极/电解质界面问题上面临着巨大挑战,本文详细介绍了硫化物固态电解质和聚合物基体电解质在Li-S电池中的研究进展,并重点分析了电极/电解质固-固界面接触问题。针对硫化物固态电解质存在的本征缺陷,阐述了改善固态电解质化学及电化学稳定性的方法;针对有机聚合物电解质,总结分析了影响其离子电导率的关键因素及提升方法。在电极/电解质界面问题方面,揭露了影响界面离子传输及界面稳定性的本征特性,并总结了近年来报道的针对正(负)极/电解质界面离子传输低的改进方法。最后指出要有针对性的解决不同种类电解质的本征缺陷,并结合科学模拟深入研究界面传输机制,在实践中对电极/电解质界面结构的合理设计,对固态Li-S电池的实用化具有重要意义。
中图分类号:
朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862.
Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 848-862.
| 1 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 1-16. | 
| 2 | WANG H, ZHANG B, ZENG X, et al. 3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228588. | 
| 3 | HONG X D, WANG R, LIU Y, et al. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries[J]. Journal of Energy Chemistry, 2020, 42(3): 144-168. | 
| 4 | HU Y, CHEN W, LEI T, et al. Strategies toward high-loading lithium-sulfur battery[J]. Advanced Energy Materials, 2020, 10(17): doi: 10.1002/adma.202000082 | 
| 5 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. | 
| 6 | LI S, ZHANG X, CHEN H, et al. Electrocatalytic effect of 3D porous sulfur/gallium hybrid materials in lithium-sulfur batteries[J]. Electrochimica Acta, 2020, 364: doi: 10.1016/j.electacta.2020.137259. | 
| 7 | ZHAO M, LI B Q, ZHANG X Q, et al. A perspective toward practical lithium-sulfur batteries[J]. ACS Central Science, 2020, 6(7): 1095-1104. | 
| 8 | ZHANG X, YANG Y, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Social Reviews, 2020, 49(10): 3040-3071. | 
| 9 | JANA M, XU R, CHENG X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries[J]. Energy & Environmental Science, 2020, 13(4): 1049-1075. | 
| 10 | ZHAO M, LI B Q, PENG H J, et al. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities[J]. Angewandte Chemie, 2020, 59(31): 12636-12652. | 
| 11 | ZHOU J, ZHANG D, WAN T, et al. Pomegranate-like conductive spherical composite as multifunctional cathode for high-performance lithium-sulfur battery[J]. Journal of Alloys and Compounds, 2021, 855: doi: 10.1016/j.jallcom.2020.157382. | 
| 12 | ZHANG Q, HUANG N, HUANG Z, et al. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. Journal of Energy Chemistry, 2020, 40: 151-155. | 
| 13 | WU B B, WANG S Y, EVANS W J, et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems[J]. Journal of Materials Chemistry A, 2016, 4(40): 15266-15280. | 
| 14 | GU S, HUANG X, WANG Q, et al. A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(27): 13971-13975. | 
| 15 | HAN F D, YUE J, FAN X L, et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Letters, 2016, 16(7): 4521-4527. | 
| 16 | SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386. | 
| 17 | JIANG W, YAN L J, ZENG X M, et al. Adhesive sulfide solid electrolyte interface for lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54876-54883. | 
| 18 | AHMAD N, ZHOU L, FAHEEM M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21548-21558. | 
| 19 | LI R X, LIAO K M, ZHOU W, et al. Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy[J]. Journal of Membrane Science, 2019, 582: 194-202. | 
| 20 | ZHENG N F, BU X H, FENG P Y. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 426(6965): 428-432. | 
| 21 | MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17(7): 918-921. | 
| 22 | HAYASHI A, HAMA S, MORIMOTO H, et al. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479. | 
| 23 | HAYASHI A, HAMA S, MINAMI T, et al. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J]. Electrochemistry Communications, 2003, 5(2): 111-114. | 
| 24 | HAYASHI A, MINAMI K, UJIIE S, et al. Preparation and ionic conductivity of Li7P3S11-z glass-ceramic electrolytes[J]. Journal of Non-Crystalline Solids, 2010, 356(44-49): 2670-2673. | 
| 25 | SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631. | 
| 26 | MIZUNO F, HAYASHI A, TADANAGA K, et al. High lithium ion conducting glass-ceramics in the system Li2S-P2S5[J]. Solid State Ionics, 2006, 177: 2721-2725. | 
| 27 | TACHEZ M, MALUGANI J P, MERCIER R, et al. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4[J]. Solid State Ionics, 1984, 14(3): 181-185. | 
| 28 | LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. | 
| 29 | KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742-A746. | 
| 30 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. | 
| 31 | BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: An affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697. | 
| 32 | KUHN A, GERBIG O, ZHU C, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14669-14674. | 
| 33 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.30. | 
| 34 | KUHN A, DUPPEL V, LOTSCH B V. Tetragonal Li10GeP2S12 and Li7GePS8-exploring the Li ion dynamics in LGPS Li electrolytes[J]. Energy & Environmental Science, 2013, 6(12): 3548-3552. | 
| 35 | RANGASAMY E, LIU Z, GOBET M, et al. An iodide-based Li7P2S8I superionic conductor[J]. Journal of the American Chemical Society, 2015, 137(4): 1384-1387. | 
| 36 | BOULINEAU S, COURTY M, TARASCON J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X(X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ionics, 2012, 221: 1-5. | 
| 37 | ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie, 2019, 58(26): 8681-8686. | 
| 38 | ZHOU L D, PARK K H, SUN X Q, et al. Solvent-engineered design of argyrodite Li6PS5X(X=Cl, Br, I) solid electrolytes with high ionic conductivity[J]. ACS Energy Letters, 2019, 4(1): 265-270. | 
| 39 | HAYASHI A, OHTOMO T, MIZUNO F, et al. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes[J]. Electrochemistry Communications, 2003, 5(8): 701-705. | 
| 40 | XU R C, YUE J, LIU S F, et al. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): 1073-1079. | 
| 41 | MERCIER R, MALUGANI J P, FAHYS B, et al. Superionic conduction in Li2S-P2S5-LiI-glasses[J]. Solid State Ionics, 1981, 5(10): 663-666. | 
| 42 | UJIIE S, HAYASHI A, TATSUMISAGO M. Preparation and ionic conductivity of (100-x)(0.8Li2S·0.2P2S5)·xLiI glass-ceramic electrolytes[J]. Journal of Solid State Electrochemistry, 2013, 17(3): 675-680. | 
| 43 | UJIIE S, HAYASHI A, TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2012, 211:42-45. | 
| 44 | KANNO R, HATA T, KAWAMOTO Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1/2): 97-104. | 
| 45 | NAGAO M, IMADE Y, NARISAWA H, et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte[J]. Journal of Power Sources, 2013, 222: 237-242. | 
| 46 | NAGAO M, SUZUKI K, IMADE Y, et al. All-solid-state lithium-sulfur batteries with three-dimensional mesoporous electrode structures[J]. Journal of Power Sources, 2016, 330: 120-126. | 
| 47 | NAGATA H, CHIKUSA Y. A lithium sulfur battery with high power density[J]. Journal of Power Sources, 2014, 264: 206-210. | 
| 48 | OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. Characteristics of the Li2O-Li2S-P2S5 glasses synthesized by the two-step mechanical milling[J]. Journal of Non-Crystalline Solids, 2013, 364:57-61. | 
| 49 | HAYASHI A, MURAMATSU H, OHTOMO T, et al. Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries[J]. Journal of Alloys and Compounds, 2014, 591:247-250. | 
| 50 | AGRAWAL R C, PANDEY G P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview[J]. Journal of Physics D: Applied Physics, 2008, 41(22): doi: 10.1088/0022-3727/41/22/223001. | 
| 51 | XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. | 
| 52 | 石凯, 安德成, 贺艳兵, 等. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. | 
| SHI K, AN D C, HE Y B, et al. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes[J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. | |
| 53 | JEDDI K, GHAZNAVI M, CHEN P. A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(8): 2769-2772. | 
| 54 | WANG Z X, HUANG B Y, HUANG H, et al. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy[J]. Electrochimica Acta, 1996, 41(9): 1443-1446. | 
| 55 | RYU H S, AHN H J, KIM K W, et al. Discharge process of Li/PVDF/S cells at room temperature[J]. Journal of Power Sources, 2006, 153(2): 360-364. | 
| 56 | MARMORSTEIN D, YU T H, STRIEBEL K A, et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes[J]. Journal of Power Sources, 2000, 89(2): 219-226. | 
| 57 | 马强, 戚兴国, 容晓晖, 等. 新型固态聚合物电解质在锂硫电池中的性能研究[J]. 储能科学与技术, 2016, 5(5): 713-718. | 
| MA Q, QI X G, RONG X H, et al. Novel solid polymer electrolytes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 713-718. | |
| 58 | LIU K, LIN Y, MILLER J D, et al. Study of room temperature solid polymer electrolyte for lithium sulfur battery[J]. ECS Transactions, 2016: 209-221. | 
| 59 | JAYATHILAKA P A, DISSANAYAKE M A, ALBINSSON I, et al. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system[J]. Electrochimica Acta, 2002, 47(20): 3257-3268. | 
| 60 | CROCE F, PERSI L L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16): 2457-2461. | 
| 61 | CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184. | 
| 62 | LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. | 
| 63 | HASSOUN J, SCROSATI B. Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications[J]. Advanced Materials, 2010, 22(45): 5198-5201. | 
| 64 | 谭斌, 马先果, 黄心蓝, 等. PEO-LiClO4-Li4Ti5O12复合聚合物电解质性能研究[J]. 电源技术, 2013, 37(1): 74-77. | 
| TAN B, MA X G, HUANG X L, et al. Research on properties of PEO-LiClO4-Li4Ti5O12 composite polymer electrolyte[J]. Chinese Journal of Power Sources, 2013, 37(1): 74-77. | |
| 65 | 赵贝贝. 高性能锂硫电池正极碳材料和聚合物电解质研究[D]. 青岛:青岛科技大学, 2020. | 
| ZHAO B B. Study on cathode carbon materials and polymer electrolyte for high performance lithium-sulfur batteries[D]. Qingdao: Qingdao University of Science and Technology, 2020. | |
| 66 | LI X, WANG D, WANG H, et al. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22745-22753. | 
| 67 | NAGAO M, HAYASHI A, TATSUMISAGO M. High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(19): 10015-10020. | 
| 68 | HAN Q, LI X, SHI X, et al. Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core-shell S@BP2000 nanocomposite[J]. Journal of Materials Chemistry A, 2019, 7(8): 3895-3902. | 
| 69 | LIN Z, LIU Z C, DUDNEY N J, et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829-2833. | 
| 70 | WANG X L, XIA Y, XU R C, et al. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries[J]. Journal of Power Sources, 2018, 374: 107-112. | 
| 71 | ASO K, SAKUDA A, HAYASHI A, et al. All-solid-state lithium secondary batteries using NiS-carbon fiber composite electrodes coated with Li2S-P2S5 solid electrolytes by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 686-690. | 
| 72 | WENZEL S, LEICHTWEISS T, KRUEGER D, et al. Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. | 
| 73 | WENZEL S, RANDAU S, LEICHTWEI T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407. | 
| 74 | HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. | 
| 75 | JIANG Z, LIANG T B, LIU Y, et al. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54662-54670. | 
| 76 | XU R, HAN F, JI X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53: 958-966. | 
| 77 | ZHANG Y, CHEN R, WANG S, et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries[J]. Energy Storage Materials, 2020, 25: 145-153. | 
| 78 | DAI J, YANG C, WANG C, et al. Interface engineering for garnet-based solid-state lithium-metal batteries: Materials, structures, and characterization[J]. Advanced Materials, 2018, 30(48): doi: 10.1002/adma.201802068. | 
| 79 | LONG P, XU Q, PENG G, et al. NiS nanorods as cathode materials for all-solid-state lithium batteries with excellent rate capability and cycling stability[J]. Chemelectrochem, 2016, 3(5): 764-769. | 
| 80 | SUN F, DONG K, OSENBERG M, et al. Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction[J]. Journal of Materials Chemistry A, 2018, 6(45): 22489-22496. | 
| 81 | KANNO R, MURAYAMA M, INADA T, et al. A self-assembled breathing interface for all-solid-state ceramic lithium batteries[J]. Electrochemical and Solid State Letters, 2004, 7(12): A455-A458. | 
| 82 | KOBAYASHI T, YAMADA A, KANNO R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON[J]. Electrochimica Acta, 2008, 53(15): 5045-5050. | 
| 83 | SAKUMA M, SUZUKI K, HIRAYAMA M, et al. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M(M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics, 2016, 285: 101-105. | 
| 84 | WU J, LIU S, HAN F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): doi: 10.1002/adma.202000751. | 
| [1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. | 
| [2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. | 
| [3] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. | 
| [4] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. | 
| [5] | 苏少鹏, 李进, 张佃平, 李严, 席文, 李杨. 红柳基锂电池负极材料的制备及电化学性能[J]. 储能科学与技术, 2021, 10(6): 2082-2089. | 
| [6] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. | 
| [7] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. | 
| [8] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. | 
| [9] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. | 
| [10] | 杨春燕, 马云龙, 冯小琼, 张世英, 安长胜, 李劲风. 碳基材料在铝离子电池中的研究进展[J]. 储能科学与技术, 2021, 10(2): 432-439. | 
| [11] | 翟亭亭, 韩忠刚, 袁泽明, 张羊换. 球磨时间对TiFe系合金微观结构和电化学性能的影响[J]. 储能科学与技术, 2021, 10(1): 163-169. | 
| [12] | 王瑨, 王建全, 阮殿波, 谢皎, 杨斌. 硅/活性炭复合材料的制备及其电化学性能[J]. 储能科学与技术, 2021, 10(1): 104-110. | 
| [13] | 王继贤, 彭思侃, 南文争, 陈翔, 王晨, 燕绍九, 戴圣龙. 喷雾干燥法制备石墨烯包覆富锂锰基材料Li1.22Mn0.52Ni0.26O2及其电化学性质[J]. 储能科学与技术, 2021, 10(1): 111-117. | 
| [14] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. | 
| [15] | 朱佳静, 高筠. Water-in-salt电解液研究进展[J]. 储能科学与技术, 2020, 9(S1): 13-22. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
