1 |
LIU Z, LIU X, YANG X Q, et al. Assessment of a new combined thermal and compressed energy storage coupled with an absorption power cycle: Thermodynamic study[J]. Energy Conversion and Management, 2020, 226: doi: 10.1016/j.enconman.2020.113516.
|
2 |
杨绪青, 余真珠, 杨肖虎, 等. 压缩空气储能与吸收式热泵循环集成的热电联产系统[J]. 储能科学与技术, 2021, 10(1): 362-369.
|
|
YANG X Q, YU Z Z, YANG X H, et al. Combined heating and power system coupled with compressed air energy storage and absorption heat pump cycle[J]. Energy Storage Science and Technology, 2021, 10(1): 362-369.
|
3 |
LIU Z, YANG X Q, JIA W G, et al. Thermodynamic study on a combined heat and compressed air energy storage system with a dual-pressure organic Rankine cycle[J]. Energy Conversion and Management, 2020, 221: doi: 10.1016/j.enconman.2020.113141.
|
4 |
罗宁, 何青, 刘文毅. 压缩空气储能系统储气装置研究现状与分析[J]. 储能科学与技术, 2018, 7(3): 489-494.
|
|
LUO N, HE Q, LIU W Y. The development status and energy storage characteristic of gas storage device of compressed air energy storage system[J]. Energy Storage Science and Technology, 2018, 7(3): 489-494.
|
5 |
王志文, 熊伟, 王海涛, 等. 水下压缩空气储能研究进展[J]. 储能科学与技术, 2015, 4(6): 585-598.
|
|
WANG Z W, XIONG W, WANG H T, et al. A review on underwater compressed air energy storage[J]. Energy Storage Science and Technology, 2015, 4(6): 585-598.
|
6 |
WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823.
|
7 |
LIU Z, LIU Z H, YANG X Q, et al. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system[J]. Energy Conversion and Management, 2020, 205: doi: 10.1016/j.enconman.2019.112391.
|
8 |
XU M J, ZHAO P, HUO Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: doi: 10.1016/j.jclepro.2019.118437.
|
9 |
LIU Z, LIU Z H, XIN X, et al. Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy. 2020.115067.
|
10 |
SUN W X, LIU X, YANG X Q, et al. Design and thermodynamic performance analysis of a new liquid carbon dioxide energy storage system with low pressure stores[J]. Energy Conversion and Management, 2021, 239: doi: 10.1016/j.enconman.2021.114227.
|
11 |
ZHAO P, XU W P, ZHANG S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: A pathway towards realizability[J]. Energy Conversion and Management, 2021, 229: doi: 10.1016/j.enconman.2020.113679
|
12 |
DAI B M, LI M X, MA Y T. Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery[J]. Energy, 2014, 64: 942-952.
|
13 |
CHEN C C, LIAW H J, WANG T C, et al. Carbon dioxide dilution effect on flammability limits for hydrocarbons[J]. Journal of Hazardous Materials, 2009, 163(2/3): 795-803.
|
14 |
XIA J X, WANG J F, ZHANG G, et al. Thermo-economic analysis and comparative study of transcritical power cycles using CO2-based mixtures as working fluids[J]. Applied Thermal Engineering, 2018, 144: 31-44.
|
15 |
杨珍帅, 王焕然, 李瑞雄, 等. 内燃机增压-压缩空气储能冷热电联产系统[J]. 储能科学与技术, 2020, 9(6): 1917-1925.
|
|
YANG Z S, WANG H R, LI R X, et al. A novel combined cooling heating and power system with coupled compressed air energy storage and supercharged diesel engine[J]. Energy Storage Science and Technology, 2020, 9(6): 1917-1925.
|
16 |
王冠邦, 张信荣. 热电储能技术及二氧化碳在其中的应用[J]. 储能科学与技术, 2017, 6(6): 1239-1249.
|
|
WANG G B, ZHANG X R. Thermoelectric energy storage system and applications using CO2 cycles[J]. Energy Storage Science and Technology, 2017, 6(6): 1239-1249.
|