储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1796-1805.doi: 10.19799/j.cnki.2095-4239.2021.0330

• 物理储能十年专刊·新物理储能 • 上一篇    下一篇

基于逆/正布雷顿循环的热泵储电系统性能

张涵1,2(), 王亮1,2(), 林曦鹏1, 陈海生1,2,3   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.中国科学院大学,北京 100049
    3.中科院工程热物理研究所南京未来能源系统研究院,江苏 南京 211135
  • 收稿日期:2021-07-12 修回日期:2021-07-22 出版日期:2021-09-05 发布日期:2021-09-08
  • 作者简介:张涵(1996—),女,博士研究生,主要研究方向为热泵储电技术,E-mail:zhanghan@iet.cn|王亮,研究员,主要研究方向为大规模储热储冷、压缩空气储能和热泵储电的基础研究及关键技术研发等,E-mail:wangliang@iet.cn
  • 基金资助:
    国家重点研发计划(2018YFB0905504);国家自然科学基金(51976217);中国科学院国际合作局国际伙伴计划(182211KYSB20170029);内蒙古自治区科技重大专项(2019ZD014)

Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle

Han ZHANG1,2(), Liang WANG1,2(), Xipeng LIN1, Haisheng CHEN1,2,3   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Nanjing Institute of Future Energy System, Institute of Engineering Thermophysics, Chinese Academy of Science, Nanjing 211135, Jiangsu, China
  • Received:2021-07-12 Revised:2021-07-22 Online:2021-09-05 Published:2021-09-08

摘要:

热泵储电(PTES)是一类成本低、能量密度高、不受地理位置限制的新型物理储电技术。本文采用动力学、非稳态传热学和有限时间热力学耦合的方法,探究了热泵储电系统循环稳定状态下的瞬态行为。分析并对比了分别由Isentropic Ltd.和Saipem S.A.公司提出的基于逆/正布雷顿循环的PTES系统的性能(简称Is-PTES和Sa-PTES系统),并讨论了流动工质、系统温度上限和蓄冷蓄热器体积对系统性能的影响。结果表明,标准工况下,Sa-PTES系统储电效率较高,而Is-PTES系统输出稳定性较强;Is-PTES和Sa-PTES系统的储电效率分别可以达到56.42%和64.28%;使用氦气工质的系统性能最优,空气次之,氩气最差。通过?分析发现Is-PTES系统?损失最大部件为压缩机和膨胀机,而Sa-PTES系统?损失最大部件是换热器和蓄冷蓄热器。当系统允许的上限温度较低时,Is-PTES系统性能优于Sa-PTES系统。Sa-PTES系统在高温度上限条件下可获得较优性能,且受填充床体积影响程度更大。

关键词: 布雷顿循环, 热泵储电, 储能, ?分析

Abstract:

Pumped thermal electricity storage (PTES) systems are a novel type of physical energy storage technology with low capital cost, high energy density, and no geographical restriction. In this study, the transient behavior of PTES systems based on the Brayton cycle was explored under cyclic stable state by coupling dynamics analysis method, transient heat transfer, and finite-time thermodynamics. The performance of the two concepts of PTES systems proposed by Isentropic Ltd. and Saipem S.A. company (hereafter, Is-PTES and Sa-PTES system, respectively) was analyzed and compared, and the influence of the working fluid, system maximum temperature, and volume of thermal energy storage reservoirs on the performance of the system are discussed. Under standard operating conditions, the round-trip efficiency of the Sa-PTES system is higher, whereas the Is-PTES system exhibits better output stability. The round-trip efficiency of the Is-PTES and Sa-PTES systems reaches 56.42% and 64.28%, respectively, and the performance of the PTES system using He is the best, followed by that of the system using air, and that of the system using Ar is the worst. Exergy analysis demonstrated that the compressors and expanders account for the highest proportion of exergy loss in the Is-PTES system, which was converted into heat exchangers and thermal energy storage reservoirs in the Sa-PTES system. When the allowable upper limit temperature of the PTES system is low, the performance of the Is-PTES system becomes better than that of the Sa-PTES system. For the Sa-PTES system, better performance can be obtained under high upper-temperature conditions, and it is affected more by the volume of packed beds.

Key words: Brayton cycle, pumped thermal electricity storage, energy storage, exergy analysis

中图分类号: