| 1 | CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science-Materials International, 2009, 19(3): 291-312. | 
																													
																						| 2 | GUO H, XU Y J, GUO C, et al. Thermodynamic analysis of packed bed thermal energy storage system[J]. Journal of Thermal Science, 2020, 29(2): 445-456. | 
																													
																						| 3 | MARGUERRE F. Ueber ein neues verfahren zur aufspeicherung elektrischer energie[J]. Mitteilungen der Vereinigung der Elektrizitätswerke, 1924, 354(55): 27-35. | 
																													
																						| 4 | MORANDIN M, MARECHAL F, MERCANGOZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-Part A: Methodology and base case[J]. Energy, 2012, 45(1): 375-385. | 
																													
																						| 5 | MERCANGÖZ M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45(1): 407-415. | 
																													
																						| 6 | STEINMANN W D. The CHEST (compressed heat energy storage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69: 543-552. | 
																													
																						| 7 | HOWES J. concept and development of a pumped heat electricity storage device[J]. Proceeding of the IEEE, 2011, 100(2): 493-503. | 
																													
																						| 8 | RUER J. Installation and methods for storing and methods for storing and restoring electrical energy using a piston-type gas compression and expansion unit: US8443605[P]. [2013-05-21]. | 
																													
																						| 9 | LAUGHLIN R B, LAROCHELLE P, CIZEK N. Systems and methods for energy storage and retrieval: USWO/2014/052927[P].[2014-04-03]. | 
																													
																						| 10 | LAUGHLIN R B. Adiabatic salt energy storage: US9932830[P]. [2018-04-03]. | 
																													
																						| 11 | DESRUES T, RUER J, MARTY P, et al. A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30(5): 425-432. | 
																													
																						| 12 | NI F, CARAM H S. Analysis of pumped heat electricity storage process using exponential matrix solutions[J]. Applied Thermal Engineering, 2015, 84: 34-44. | 
																													
																						| 13 | LAUGHLIN R B. Pumped thermal grid storage with heat exchange[J]. Journal of Renewable and Sustainable Energy, 2017, 9(4): doi: 10.1063/1.4994054. | 
																													
																						| 14 | Newcastle University. Hot rock solution to grid-scale energy storage[EB/OL], https://www.ncl.ac.uk/press/articles/archive/2017/11/Isentropic. | 
																													
																						| 15 | THE ENGINEER. Newcastle University connects first grid-scale pumped heat energy storage system[EB/OL]. https://www.theengineer.co.uk/grid-scale-pumped-heat-energy-storage/. | 
																													
																						| 16 | WHITE A, PARKS G, MARKIDES C N. Thermodynamic analysis of pumped thermal electricity storage[J]. Applied Thermal Engineering, 2013, 53(2): 291-298. | 
																													
																						| 17 | MCTIGUE J D, WHITE A J, MARKIDES C N. Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137: 800-811. | 
																													
																						| 18 | WANG L, LIN X P, CHAI L, et al. Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based pumped thermal electricity storage[J]. Energy Conversion and Management, 2019, 185: 593-602. | 
																													
																						| 19 | WANG L, LIN X P, CHAI L, et al. Cyclic transient behavior of the Joule-Brayton based pumped heat electricity storage: Modeling and analysis[J]. Renewable & Sustainable Energy Reviews, 2019, 111: 523-534. | 
																													
																						| 20 | WANG L, LIN X P, ZHANG H, et al. Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array[J]. Applied Energy, 2021, 291: doi: 10.1016/j.apenergy. 2021.116821. | 
																													
																						| 21 | ZHANG H, WANG L, LIN X P, et al. Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle[J]. Applied Energy, 2020, 278: doi: 10.1016/j.apenergy. 2020.115607. | 
																													
																						| 22 | ZHANG N, CAI R X. Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration[J]. Energy Conversion and Management, 2002, 43(9): 1323-1337. | 
																													
																						| 23 | WANG W, CAI R X, ZHANG N. General characteristics of single shaft microturbine set at variable speed operation and its optimization[J]. Applied Thermal Engineering, 2004, 24(13): 1851-1863. | 
																													
																						| 24 | GUO H, XU Y J, ZHANG Y, et al. Off-design performance and operation strategy of expansion process in compressed air energy systems[J]. International Journal of Energy Research, 2018, 43(1): 475-490. | 
																													
																						| 25 | ZANGANEH G, PEDRETTI A, ZAVATTONI S, et al. Packed-bed thermal storage for concentrated solar power-pilot-scale demonstration and industrial-scale design[J]. Solar Energy, 2012, 86(10): 3084-3098. | 
																													
																						| 26 | SCIACOVELLI A, LI Y L, CHEN H S, et al. Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage-link between components performance and plant performance[J]. Applied Energy, 2017, 185: 16-28. | 
																													
																						| 27 | MCTIGUE J. Analysis and optimisation of thermal energy storage[D]. UK: University of Cambridge, 2016. |