储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 1998-2007.doi: 10.19799/j.cnki.2095-4239.2021.0326
练文超1(), 雷励斌1(), 梁波1, 王超1, 魏磊1, 田志鹏1, 刘建平1, 杨华政2, 梁家健2, 施涛3
收稿日期:
2021-07-08
修回日期:
2021-07-22
出版日期:
2021-11-05
发布日期:
2021-11-03
通讯作者:
雷励斌
E-mail:931830289@qq.com;libinlei23@gdut.edu.cn
作者简介:
练文超(1996—),男,硕士研究生,研究方向为固体氧化物燃料电池/电解池, E-mail:基金资助:
Wenchao LIAN1(), Libin LEI1(), Bo LIANG1, Chao WANG1, Lei WEI1, Zhipeng TIAN1, Jianping LIU1, Huazheng YANG2, Jiajian LIANG2, Tao SHI3
Received:
2021-07-08
Revised:
2021-07-22
Online:
2021-11-05
Published:
2021-11-03
Contact:
Libin LEI
E-mail:931830289@qq.com;libinlei23@gdut.edu.cn
摘要:
氨作为一种理想的储能材料和氢能源载体,其在质子导体固体氧化物电化学装置中的利用与合成可实现高效清洁的发电和储能。本文综述了质子导体固体氧化物电化学装置中氨的利用与合成的实验和理论研究进展,在实验研究方面全面分析了电解质和氨电极材料的开发,在理论研究方面重点讨论了热力学-电化学模型和密度泛函理论(DFT)的研究概况。电解质的质子电导率和氨电极的催化活性是影响电化学装置性能的关键因素,因此开发高质子电导率的电解质和高催化活性的氨电极仍是主要的研究方向。热力学-电化学模型和基于DFT的理论研究可分别为电化学装置的结构设计/运行条件的优化和氨电极材料的开发提供有效指导和思路,但是对于更高层次(三维)的热力学-电化学模型理论研究和氨电极材料上氮气的电化学活化机理的研究仍需加强。最后总结指出了质子导体固体氧化物电化学装置中氨的利用与合成的未来研究方向。
中图分类号:
练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007.
Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices[J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007.
表1
以氨为燃料的H-SOFCs的实验研究"
燃料电池(氨电极 | 电解质 | 空气电极) | 电解质厚度/μm | 工作温度/℃ | 最大功率密度/(mW/cm2) | 年份,文献 |
---|---|---|---|---|
Pt | BCGO | Pt | 1300 | 700 | 25 | 2004,[ |
Pt | BCGP | Pt | 1300 | 700 | 35 | 2005,[ |
Pt | BCE | Pt | 1000 | 700 | 32 | 2006,[ |
Ni-BCGO | BCGO | LSCO | 50 | 650 | 184 | 2006,[ |
700 | 355 | |||
Ni-BCNO | BCNO | LSCO | 20 | 700 | 315 | 2007,[ |
Ni-BCE | BCGP | Pt | 1000 | 500 | 15 | 2008,[ |
600 | 28 | |||
Ni-CGO | BCGO | BSCFO-CGO | 30 | 600 | 147 | 2008,[ |
650 | 200 | |||
Ni-BZCY17 | BZCY17 | BSCF | 35 | 450 | 25 | 2010,[ |
700 | 325 | |||
Ni-BCY25 | BCY10 | SSC | 1000 | 600 | 165 | 2015,[ |
650 | 210 | |||
Ni-BZY20 | BZY20 | Pt | 60~90 | 600 | 70 | 2017,[ |
700 | 130 | |||
Ni-BZCY44 | BCY20 | BCY20-LSCF | 50~60 | 600 | 130 | 2020,[ |
700 | 180 | |||
Ni-BZCYYbPd | BZCYYbPd | BCFZY | 17 | 600 | 500 | 2021,[ |
650 | 724 |
表2
质子导体反应器电化学合成氨的代表性实验研究"
质子导体反应器(氢电极 | 电解质 | 氨电极) | 工作温度/℃ | FE/% | 年份,文献 | |
---|---|---|---|---|
Pd | SCY | Pd | 570 | 78 | 1998,[ | |
Ag-Pd | LCZ | Ag-Pd | 520 | — | 2004,[ | |
Ag-Pd | CLC | Ag-Pd | 650 | — | 2005,[ | |
Ag-Pd | LSGM | Ag-Pd | 550 | 70 | 2007,[ | |
Ag-Pd | BCC | Ag-Pd | 500 | 50 | 2010,[ | |
Ni-BCY15 | BCY15 | BSCF | 530 | 60 | 2010,[ | |
LSCF | BZY20 | LSCF | 550 | 0.33 | 2015,[ | |
Pt | BCY | LSTR-BCY | 500 | — | 2016,[ | |
Pt | BCY | LST-BCYR | 500 | 2.1 | 2017,[ | |
Ni-BCZYZ | BCZYZ | Fe-BCZYZ | 450 | 2.5 | 2017,[ | |
Ni-BZCY44 | BZCY44 | BSTR | 500 | 5.9 | 2019,[ | |
Ni-BZCY72 | BZCY81 | VN-Fe | 600 | 14 | 2020,[ |
1 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
2 | SIDDIQUI O, DINCER I. A review and comparative assessment of direct ammonia fuel cells[J]. Thermal Science and Engineering Progress, 2018, 5: 568-578. |
3 | 董旭, 杜志鸿, 张旸, 等. 固体氧化物燃料电池高催化活性阴极材料SrFeFxO3-x-δ[J]. 储能科学与技术, 2020, 9(2): 415-424. |
DONG X, DU Z H, ZHANG Y, et al. SrFeFxO3-x-δ cathode with high catalytic activity for solid oxide fuel cells[J]. Energy Storage Science and Technology, 2020, 9(2): 415-424. | |
4 | NI M, LEUNG M K H, LEUNG D Y C. Ammonia-fed solid oxide fuel cells for power generation-A review[J]. International Journal of Energy Research, 2009, 33(11): 943-959. |
5 | MINIC D. Hydrogen energy-challenges and perspectives[M]. London: InTech, 2012. |
6 | 王月姑, 周梅, 王兆林, 等. 以氨燃料为介质的全生命周期储能效率估算[J]. 储能科学与技术, 2018, 7(2): 301-308. |
WANG Y G, ZHOU M, WANG Z L, et al. Life-cycle energy efficiency estimation of large-scale ammonia fuel energy storage system[J]. Energy Storage Science and Technology, 2018, 7(2): 301-308. | |
7 | MCFARLAN A, PELLETIER L, MAFFEI N. An intermediate-temperature ammonia fuel cell using Gd-doped Barium cerate electrolyte[J]. Journal of the Electrochemical Society, 2004, 151(6): A930. |
8 | PELLETIER L, MCFARLAN A, MAFFEI N. Ammonia fuel cell using doped Barium cerate proton conducting solid electrolytes[J]. Journal of Power Sources, 2005, 145(2): 262-265. |
9 | MAFFEI N, PELLETIER L, CHARLAND J P, et al. An ammonia fuel cell using a mixed ionic and electronic conducting electrolyte[J]. Journal of Power Sources, 2006, 162(1): 165-167. |
10 | MA Q L, PENG R R, LIN Y J, et al. A high-performance ammonia-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2006, 161(1): 95-98. |
11 | XIE K, MA Q L, LIN B, et al. An ammonia fuelled SOFC with a BaCe0.9Nd0.1O3-δ thin electrolyte prepared with a suspension spray[J]. Journal of Power Sources, 2007, 170(1): 38-41. |
12 | MAFFEI N, PELLETIER L, MCFARLAN A. A high performance direct ammonia fuel cell using a mixed ionic and electronic conducting anode[J]. Journal of Power Sources, 2008, 175(1): 221-225. |
13 | ZHANG L M, YANG W S. Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte[J]. Journal of Power Sources, 2008, 179(1): 92-95. |
14 | LIN Y, RAN R, GUO Y M, et al. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2637-2642. |
15 | YANG J, MOLOUK A F, OKANISHI T, et al. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7406-7412. |
16 | MIYAZAKI K, OKANISHI T, MUROYAMA H, et al. Development of Ni-Ba(Zr, Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells[J]. Journal of Power Sources, 2017, 365: 148-154. |
17 | MIYAZAKI K, MUROYAMA H, MATSUI T, et al. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells[J]. Sustainable Energy & Fuels, 2020, 4(10): 5238-5246. |
18 | HE F, GAO Q N, LIU Z Q, et al. Proton-conducting fuel cells: A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures[J]. Advanced Energy Materials, 2021, 11(19): 2170075. |
19 | BHIDE S V, VIRKAR A V. Stability of BaCeO3-Based proton conductors in water-containing atmospheres[J]. Journal of the Electrochemical Society, 1999, 146(6): 2038-2044. |
20 | LEI L B, ZHANG J H, YUAN Z H, et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Advanced Functional Materials, 2019, 29(37): doi:10.10021adfm.201903805. |
21 | KATAHIRA K, KOHCHI Y, SHIMURA T, et al. Protonic conduction in Zr-substituted BaCeO3[J]. Solid State Ionics, 2000, 138(1/2): 91-98. |
22 | HE F, TENG Z Y, YANG G M, et al. Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells[J]. Journal of Power Sources, 2020, 460: doi:10.1016/jpousour.2020.228105. |
23 | QIU R M, LIAN W C, OU Y Z, et al. Multifactor theoretical analysis of current leakage in proton-conducting solid oxide fuel cells[J]. Journal of Power Sources, 2021, 505:doi:10.1016/j.jpowsour.2021.230038. |
24 | RARÓG-PILECKA W, SZMIGIEL D, KOWALCZYK Z, et al. Ammonia decomposition over the carbon-based ruthenium catalyst promoted with Barium or cesium[J]. Journal of Catalysis, 2003, 218(2): 465-469. |
25 | BELL T E, TORRENTE-MURCIANO L. H2 production via ammonia decomposition using non-noble metal catalysts: A review[J]. Topics in Catalysis, 2016, 59(15/16): 1438-1457. |
26 | YANG J, MOLOUK A F S, OKANISHI T, et al. A stability study of Ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28701-28707. |
27 | NI M, LEUNG D Y C, LEUNG M K H. Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte[J]. Journal of Power Sources, 2008, 183(2): 682-686. |
28 | ISHAK F, DINCER I, ZAMFIRESCU C. Thermodynamic analysis of ammonia-fed solid oxide fuel cells[J]. Journal of Power Sources, 2012, 202: 157-165. |
29 | NI M, LEUNG D Y C, LEUNG M K H. Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte[J]. Journal of Power Sources, 2008, 183(2): 687-692. |
30 | KALINCI Y, DINCER I. Analysis and performance assessment of NH3 and H2 fed SOFC with proton-conducting electrolyte[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5795-5807. |
31 | NI M, LEUNG D Y C, LEUNG M K H. An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate temperatures[J]. Journal of Power Sources, 2008, 185(1): 233-240. |
32 | NI M. 2D CFD modeling of ammonia fueled solid oxide fuel cells with proton conducting electrolyte[C]//Proceedings of ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, June 14-16, 2010, Brooklyn, New York, USA. 2010: 25-33. |
33 | GUNDUZ S, DEKA D J, OZKAN U S. A review of the current trends in high-temperature electrocatalytic ammonia production using solid electrolytes[J]. Journal of Catalysis, 2020, 387: 207-216. |
34 | MARNELLOS G, STOUKIDES M. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100. |
35 | SKODRA A, STOUKIDES M. Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure[J]. Solid State Ionics, 2009, 180(23/24/25): 1332-1336. |
36 | KYRIAKOU V, GARAGOUNIS I, VOURROS A, et al. An electrochemical Haber-Bosch process[J]. Joule, 2020, 4(1): 142-158. |
37 | XIE Y H, WANG J D, LIU R Q, et al. Preparation of La1.9Ca0.1Zr2O6.95 with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure[J]. Solid State Ionics, 2004, 168(1/2): 117-121. |
38 | 刘瑞泉, 谢亚红, 李志杰, 等. 质子导体(Ce0.8La0.2)1-xCaxO2-δ在合成氨中的应用[J]. 物理化学学报, 2005, 21(9): 967-970. |
LIU R Q, XIE Y H, LI Z J, et al. Application of proton conductors(Ce0.8La0.2)1-xCaxO2-δ in synthesis of ammonia[J]. Acta Physico-Chimica Sinica, 2005, 21(9): 967-970. | |
39 | ZHANG F, YANG Q, PAN B, et al. Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α ceramic prepared via microemulsion method and its application in ammonia synthesis at atmospheric pressure[J]. Materials Letters, 2007, 61(19/20): 4144-4148. |
40 | LIU J W, LI Y D, WANG W B, et al. Proton conduction at intermediate temperature and its application in ammonia synthesis at atmospheric pressure of BaCe1-x Cax O3-α[J]. Journal of Materials Science, 2010, 45(21): 5860-5864. |
41 | WANG W B, CAO X B, GAO W J, et al. Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3-α membrane[J]. Journal of Membrane Science, 2010, 360(1/2): 397-403. |
42 | YUN D S, JOO J H, YU J H, et al. Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped Barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst[J]. Journal of Power Sources, 2015, 284: 245-251. |
43 | KOSAKA F, NODA N, NAKAMURA T, et al. In situ formation of Ru nanoparticles on La1-xSrxTiO3-based mixed conducting electrodes and their application in electrochemical synthesis of ammonia using a proton-conducting solid electrolyte[J]. Journal of Materials Science, 2017, 52(5): 2825-2835. |
44 | KOSAKA F, NAKAMURA T, OTOMO J. Electrochemical ammonia synthesis using mixed protonic-electronic conducting cathodes with exsolved Ru-nanoparticles in proton conducting electrolysis cells[J]. Journal of the Electrochemical Society, 2017, 164(13): F1323-F1330. |
45 | KLINSRISUK S, IRVINE J T S. Electrocatalytic ammonia synthesis via a proton conducting oxide cell with BaCe0.5Zr0.3Y0.16Zn0.04O3-δ electrolyte membrane[J]. Catalysis Today, 2017, 286: 41-50. |
46 | KIM H, CHUNG Y S, KIM T, et al. Ru-doped Barium strontium titanates of the cathode for the electrochemical synthesis of ammonia[J]. Solid State Ionics, 2019, 339:doi:10.1016/j.ssi.2019.115010. |
47 | MA G L, ZHANG F, ZHU J L, et al. Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α[J]. Chemistry of Materials, 2006, 18(25): 6006-6011. |
48 | SHIMURA T, FUJIMOTO S, IWAHARA H. Proton conduction in non-perovskite-type oxides at elevated temperatures[J]. Solid State Ionics, 2001, 143(1): 117-123. |
49 | LIU R Q, XIE Y H, WANG J D, et al. Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-δ (M = La, Y, Gd, Sm) and their proton conduction at intermediate temperature[J]. Solid State Ionics, 2006, 177(1/2): 73-76. |
50 | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
51 | GUO Y X, LIU B X, YANG Q, et al. Preparation via microemulsion method and proton conduction at intermediate-temperature of BaCe1-xYxO3-α[J]. Electrochemistry Communications, 2009, 11(1): 153-156. |
52 | AMAR I A, LAN R, TAO S W. Synthesis of ammonia directly from wet nitrogen using a redox stable La0.75Sr0.25Cr0.5Fe0.5O3–δ-Ce0.8Gd0.18Ca0.02O2–δ composite cathode[J]. RSC Adv, 2015, 5(49): 38977-38983. |
53 | LING Y H, YU J, LIN B, et al. A cobalt-free Sm0.5Sr0.5Fe0.8Cu0.2O3-δ-Ce0.8Sm0.2O2-δ composite cathode for proton-conducting solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(5): 2631-2634. |
54 | SAADATJOU N, JAFARI A, SAHEBDELFAR S. Ruthenium nanocatalysts for ammonia synthesis: A review[J]. Chemical Engineering Communications, 2015, 202(4): 420-448. |
55 | PANAGOS E, VOUDOURIS I, STOUKIDES M. Modelling of equilibrium limited hydrogenation reactions carried out in H+ conducting solid oxide membrane reactors[J]. Chemical Engineering Science, 1996, 51(11): 3175-3180. |
56 | GARAGOUNIS I, KYRIAKOU V, STOUKIDES M. Electrochemical promotion of catalytic reactions: Thermodynamic analysis and calculation of the limits in Faradaic Efficiency[J]. Solid State Ionics, 2013, 231: 58-62. |
57 | KYRIAKOU V, GARAGOUNIS I, VASILEIOU E, et al. Progress in the electrochemical synthesis of ammonia[J]. Catalysis Today, 2017, 286: 2-13. |
[1] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[2] | 李荣, 孙志高, 宋佳. 氨基酸侧链对HCFC-141b水合物形成的影响[J]. 储能科学与技术, 2022, 11(7): 2126-2132. |
[3] | 谢程露, 黄贤坤, 康丽霞, 刘永忠. 胶体溶液制备碳纳米管负载钌纳米颗粒的电催化合成氨性能[J]. 储能科学与技术, 2022, 11(6): 1947-1956. |
[4] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性实验[J]. 储能科学与技术, 2022, 11(5): 1314-1321. |
[5] | 余春林, 陈旭东, 宫川敏夫, 孙辉, 张兴旺, 童莉葛. 特殊结构前驱体对锂电池三元正极材料性能的提升[J]. 储能科学与技术, 2022, 11(3): 1000-1007. |
[6] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性的数值研究[J]. 储能科学与技术, 2022, 11(1): 291-296. |
[7] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
[8] | 李萍萍, 陈姗姗, 赵璐璐, 史明亮, 黄岩, 李初福. 整体煤气化固体氧化物燃料电池并网测试系统设计[J]. 储能科学与技术, 2021, 10(6): 2039-2045. |
[9] | 韩婷婷, 吴玉玺, 解子恒, 孟秀霞, 张津津, 解玉姣, 于方永, 杨乃涛. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942. |
[10] | 韦守李, 李希超, 常修亮, 陈兵, 许卓, 张涛, 郑莉莉, 戴作强. 固体氧化物燃料电池双极板材料发展综述[J]. 储能科学与技术, 2021, 10(6): 1943-1951. |
[11] | 吴玉玺, 韩婷婷, 解子恒, 李琳, 宋艳雯, 梁加仓, 张津津, 于方永, 杨乃涛. 直接碳固体氧化物燃料电池研究进展:碳燃料和逆向Boudouard反应催化剂[J]. 储能科学与技术, 2021, 10(6): 1977-1986. |
[12] | 郑丽娜, 王文中, 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津, 杨乃涛. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962. |
[13] | 杨绪青, 余真珠, 杨肖虎, 刘 展. 压缩空气储能与吸收式热泵循环集成的热电联产系统[J]. 储能科学与技术, 2021, 10(1): 362-369. |
[14] | 董旭, 杜志鸿, 张旸, 李科云, 赵海雷. 固体氧化物燃料电池高催化活性阴极材料SrFeF x O3- x - δ [J]. 储能科学与技术, 2020, 9(2): 415-424. |
[15] | 王月姑,周 梅,王兆林,郑淞生. 以氨燃料为介质的全生命周期储能效率估算[J]. 储能科学与技术, 2018, 7(2): 301-308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||