1 |
孙建. 浅谈新能源汽车动力电池应用现状与发展趋势[J]. 汽车实用技术, 2020, 45(17): 11-13.
|
|
SUN J. Discussion on application status and development trend of new energy vehicle power battery[J]. Automobile Applied Technology, 2020, 45(17): 11-13.
|
2 |
黄鲲, 宋志鹏, 张思瑶, 等. QC/T 743—2006电动汽车用锂离子蓄电池标准解析及与国际标准体系的比较[J]. 日用电器, 2013(10): 32-36.
|
|
HUANG K, SONG Z P, ZHANG S Y, et al. Analysis and comparison of QC/T 743—2006 lithium-ion batteries for electric vehicles with the international standard[J]. Electrical Appliances, 2013(10): 32-36.
|
3 |
孙威, 修晓青, 肖海伟, 等. 退役动力电池梯次利用的容量优化配置[J]. 电器与能效管理技术, 2017(19): 72-76.
|
|
SUN W, XIU X Q, XIAO H W, et al. Capacity allocation optimization of second-use of retired EV batteries[J]. Electrical & Energy Management Technology, 2017(19): 72-76.
|
4 |
LI B, ZHANG P P, LI X J, et al. Distributed absorption and half-search approach for economic dispatch problem in smart grids[J]. Energies, 2019, 12(8): doi: 10.3390/en12081527.
|
5 |
ZHANG C, WEI Y L, CAO P F, et al. Energy storage system: Current studies on batteries and power condition system[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3091-3106.
|
6 |
韩晓娟, 张婳, 修晓青, 等. 配置梯次电池储能系统的快速充电站经济性评估[J]. 储能科学与技术, 2016, 5(4): 514-521.
|
|
HAN X J, ZHANG H, XIU X Q, et al. Economic evaluation of fast charging electric vehicle station with second-use batteries energy storage system[J]. Energy Storage Science and Technology, 2016, 5(4): 514-521.
|
7 |
张广慧. 退役电池储能系统梯次应用研究[D]. 沈阳: 沈阳工程学院, 2018.
|
|
ZHANG G H. Research on bench application of decommissioned battery energy storage system[D]. Shenyang: Shenyang Insitute of Engineering, 2018.
|
8 |
张凯, 赵鹏, 王友仁, 等. 基于荷电状态的锂离子电池组主动均衡控制[J]. 中国机械工程, 2020, 31(16): 1931-1939.
|
|
ZHANG K, ZHAO P, WANG Y R, et al. SOC-based active equalization control for lithium-ion battery packs[J]. China Mechanical Engineering, 2020, 31(16): 1931-1939.
|
9 |
林武, 史新民, 蒋丽丽, 等. 动力电池梯次利用的异构储能电站设计与实践[J]. 浙江电力, 2020, 39(5): 41-49.
|
|
LIN W, SHI X M, JIANG L L, et al. Design and practice of A heterogeneous compatible energy storage power station by secondary utilization of retired EV battery[J]. Zhejiang Electric Power, 2020, 39(5): 41-49.
|
10 |
YANG Y, ZHU W C, XIE C J, et al. A layered bidirectional active equalization method for retired power lithium-ion batteries for energy storage applications[J]. Energies, 2020, 13(4): doi: 10.3390/en13040832.
|
11 |
李丹. 模块化独立控制梯次利用电池储能系统[D]. 北京: 北京交通大学, 2018.
|
|
LI D. Modularly and independently controlled secondary use battery energy storage system[D]. Beijing: Beijing Jiaotong University, 2018.
|
12 |
李金东, 古月圆, 王路阳, 等. 退役锂离子电池健康状态评估方法综述[J]. 储能科学与技术, 2019, 8(5): 807-812.
|
|
LI J D, GU Y Y, WANG L Y, et al. Review on state of health estimation of retired lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 807-812.
|
13 |
董慧峰, 李文启, 牛文迪, 等. 电池储能系统参与电网削峰填谷实用算法[J]. 电测与仪表, 2019, 56(18): 74-78.
|
|
DONG H F, LI W Q, NIU W D, et al. Practical algorithm applied in peak load shifting of battery energy storage system in power grid[J]. Electrical Measurement & Instrumentation, 2019, 56(18): 74-78.
|
14 |
LÜ C, LIU S S, SHEN J, et al. Comparison of equivalent circuit models of lithium-ion batteries[J]. Application of Power Technology, 2014, 17(9): 8-11.
|
15 |
罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687.
|
|
LUO Y, QI P W, HUANG H, et al. Study on battery SOC estimation by ampere-hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687.
|
16 |
万亚坤, 李阳春, 马浩天, 等. 基于扩展卡尔曼滤波算法的锂电池SOC估计[J]. 蓄电池, 2020, 57(5): 243-246, 250.
|
|
WAN Y K, LI Y C, MA H T, et al. Estimation of lithium battery SOC based on extended Kalman filter algorithm[J]. Chinese Labat Man, 2020, 57(5): 243-246, 250.
|
17 |
申彩英, 左凯. 基于开路电压法的磷酸铁锂电池SOC估算研究[J]. 电源技术, 2019, 43(11): 1789-1791.
|
|
SHEN C Y, ZUO K. Research on SOC estimation of LiFePO4 batteries based on open circuit voltage method[J]. Chinese Journal of Power Sources, 2019, 43(11): 1789-1791.
|
18 |
田冬冬, 李立伟, 杨玉新. 基于改进BP-EKF算法的SOC估算[J]. 电源技术, 2020, 44(9): 1274-1278.
|
|
TIAN D D, LI L W, YANG Y X. Research on SOC estimation based on improved BP-EKF algorithm[J]. Chinese Journal of Power Sources, 2020, 44(9): 1274-1278.
|
19 |
郭宏榆, 姜久春, 王吉松, 等. 功率型锂离子动力电池的内阻特性[J]. 北京交通大学学报, 2011, 35(5): 119-123.
|
|
GUO H Y, JIANG J C, WANG J S, et al. Characteristic on internal resistance of lithium-ion power battery[J]. Journal of Beijing Jiaotong University, 2011, 35(5): 119-123.
|
20 |
郭琦沛. 锂离子动力电池健康特征提取与诊断研究[D]. 北京: 北京交通大学, 2018.
|
|
GUO Q P. Study on the health feature extraction and diagnosis of power lithium-ion batteries[D]. Beijing: Beijing Jiaotong University, 2018.
|
21 |
纪常伟, 潘帅, 汪硕峰, 等. 动力锂离子电池老化速率影响因素的实验研究[J]. 北京工业大学学报, 2020, 46(11): 1272-1282.
|
|
JI C W, PAN S, WANG S F, et al. Experimental study on effect factors of aging rate for power lithium-ion batteries[J]. Journal of Beijing University of Technology, 2020, 46(11): 1272-1282.
|
22 |
周秀文. 电动汽车锂离子电池健康状态估计及寿命预测方法研究[D]. 长春: 吉林大学, 2016.
|
|
ZHOU X W. Research on SOH estimation and RUL prediction methods of lithium-ion battery for electric vehicles[D]. Changchun: Jilin University, 2016.
|