1 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
2 |
金玉红, 王莉, 尚玉明, 等. 锂离子电池石墨烯-LiMPO4(M=Fe, V和Mn)复合正极材料的研究进展[J]. 中国科学: 化学, 2015, 45(2): 158-167.
|
|
JIN Y H, WANG L, SHANG Y M, et al. Research progress on graphene-LiMPO4(M=Fe, V and Mn) cathode materials in lithium ion batteries[J]. Scientia Sinica Chimica, 2015, 45(2): 158-167.
|
3 |
WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301.
|
4 |
王淮斌, 李阳, 王钦正, 等. 电动汽车事故致灾机理及调查方法[J]. 储能科学与技术, 2021, 10(2): 544-557.
|
|
WANG H B, LI Y, WANG Q Z, et al. Mechanisms causing thermal runaway-related electric vehicle accidents and accident investigation strategies[J]. Energy Storage Science and Technology, 2021, 10(2): 544-557.
|
5 |
陈欣蕊, 谭立志, 赵彦民, 等. 磷酸铁锂电池循环老化后不同SOC状态热特性研究[J]. 电源技术, 2021, 45(7): 877-880.
|
|
CHEN X R, TAN L Z, ZHAO Y M, et al. Thermal characteristics of lithium-iron phosphate batteries under different SOCs after cycles[J]. Chinese Journal of Power Sources, 2021, 45(7): 877-880.
|
6 |
SHU J. Study of the interface between Li4Ti5O12 electrodes and standard electrolyte solutions in 0.-5.0 V[J]. Electrochemical and Solid-State Letters, 2008, 11(12): A238.
|
7 |
ZHANG H, YANG Y, XU H, et al. Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries[J]. InfoMat, 2021. https://onlinelibrary.wiley.com/doi/full/10.1002/inf2.12228.
|
8 |
刘琪, 郑德英, 胡秋晨, 等. 锂离子电池负极材料的研究进展[J]. 陕西煤炭, 2020, 39(S1): 21-24, 46.
|
|
LIU Q, ZHENG D Y, HU Q C, et al. Research progress of anode materials for lithium ion batteries[J]. Shaanxi Coal, 2020, 39(S1): 21-24, 46.
|
9 |
伍科, 冯丽华, 陈满, 等. 镍钴锰/钛酸锂电池体系的热稳定性[J]. 材料研究学报, 2015, 29(1): 75-80.
|
|
WU K, FENG L H, CHEN M, et al. Thermal stability of Li(NixCoyMnz)O2/Li4Ti5O12 battery[J]. Chinese Journal of Materials Research, 2015, 29(1): 75-80.
|
10 |
张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228.
|
|
ZHANG M J, YANG K, DUAN S N, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltage Engineering, 2017, 43(7): 2221-2228.
|
11 |
董海斌, 尹国瑞, 安普春, 等. 钛酸锂电池模组热失控扩展抑制技术研究[J]. 消防科学与技术, 2021, 40(6): 779-782.
|
|
DONG H B, YIN G R, AN P C, et al. Research on thermal runaway propagation suppression technology of lithium titanate battery module[J]. Fire Science and Technology, 2021, 40(6): 779-782.
|
12 |
田相军, 郭亚洲, 凌泽, 等. 锂离子动力电池滥用条件下热失控特性研究[J]. 电源技术, 2020, 44(5): 679-681, 692.
|
|
TIAN X J, GUO Y Z, LING Z, et al. Thermal runaway characteristics study of lithium ion power battery under various abuse conditions[J]. Chinese Journal of Power Sources, 2020, 44(5): 679-681, 692.
|
13 |
KIM H S, KIM S I, KIM W S. A study on electrochemical characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode for Li secondary battery[J]. Electrochimica Acta, 2006, 52(4): 1457-1461.
|
14 |
EROL S. Electrochemical impedance analysis of lithium cobalt oxide batteries[D]. University of Florida, 2011.
|
15 |
MAO B B, HUANG P F, CHEN H D, et al. Self-heating reaction and thermal runaway criticality of the lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119178.
|
16 |
LU J, NAN C Y, PENG Q, et al. Single crystalline lithium titanate nanostructure with enhanced rate performance for lithium ion battery[J]. Journal of Power Sources, 2012, 202: 246-252.
|
17 |
魏冰歆, 张卓然, 王灿. 钛酸锂负极在锂离子电池中的应用[J]. 船电技术, 2021, 41(6): 115-120.
|
|
WEI B X, ZHANG Z R, WANG C. Application of Li4Ti5O12 as anode in lithium ion batteries[J]. Marine Electric & Electronic Engineering, 2021, 41(6): 115-120.
|
18 |
SHU J. Electrochemical behavior and stability of Li4Ti5O12 in a broad voltage window[J]. Journal of Solid State Electrochemistry, 2009, 13(10): 1535-1539.
|