1 |
张春成,等. 2019年全球电力发展回顾及2020年展望[EB/OL].(2020-07-03)[2021-01-01]. https://power.in-en.com/html/power-2370405.shtml.
|
2 |
马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1-7.
|
|
MA Z, LI J W. Analysis of China's lithium resources supply system: Status, issues and suggestions[J]. China Mining Magazine, 2018, 27(10): 1-7.
|
3 |
PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338.
|
4 |
胡勇胜, 陆雅翔, 陈立泉. 钠离子电池科学与技术[M]. 北京: 科学出版社, 2020.
|
|
HU Y S, LU Y X, CHEN L Q. Na-ion batteries: Science and technology[M]. Beijing: Science Press, 2020.
|
5 |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522.
|
|
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522.
|
6 |
WU E A, KOMPELLA C S, ZHU Z Y, et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: a joint experimental and computational study[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10076-10086.
|
7 |
KIM S W, SEO D H, MA X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
|
8 |
STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271.
|
9 |
PONROUCH A, GOÑI A R, PALACÍN M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27: 85-88.
|
10 |
SUN N, LIU H, XU B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41): 20560-20566.
|
11 |
LIU P, LI Y M, HU Y S, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(34): 13046-13052.
|
12 |
潘福荣, 张建赟, 周子旺, 等. 用户侧电池储能系统的成本效益及投资风险分析[J]. 浙江电力, 2019, 38(5): 43-49.
|
|
PAN F R, ZHANG J Y, ZHOU Z W, et al. Cost-benefit and investment risk analysis of user-side battery energy storage system[J]. Zhejiang Electric Power, 2019, 38(5): 43-49.
|
13 |
林申力, 王子璇. 供电局储能系统经济性分析[J]. 电工技术, 2019(7): 28-32.
|
|
LIN S L, WANG Z X. Economic analysis of energy storage systems invested by a power supply bureau[J]. Electric Engineering, 2019(7): 28-32.
|
14 |
徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40(12): 10-18.
|
|
XU R C, ZHANG J T, LIU M Y, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(12): 10-18.
|
15 |
北极星储能网. 2021储能扫描丨储能市场竞争炽热化!储能中标均价1.476元/W·h(附招标年度总表)[EB/OL].(2022-01-14) [2022-01-20].https://chuneng.bjx.com.cn/news/20220114/1199377.shtml.
|
16 |
吴福保,杨波,叶季蕾,电力系统储能应用技术[M]. 北京:水利水电出版社, 2014.
|
|
WU F B, YANG B, YE J L. Grid scale energy storage: Systems and applications[M]. Beijing: China Water Power Press, 2014.
|
17 |
傅旭, 李富春, 杨攀峰. 基于全生命周期的各类储能调峰效益比较[J]. 供用电, 2020, 37(7): 88-93, 43.
|
|
FU X, LI F C, YANG P F. Benefits comparison of various energy storage equipment peak regulation based on the whole life cycle[J]. Distribution & Utilization, 2020, 37(7): 88-93, 43.
|
18 |
杨宏基, 周明, 张茗洋, 等. 电力市场下抽水蓄能电站运营策略及效益分析[J]. 华北电力大学学报(自然科学版), 2021, 48(6): 71-80.
|
|
YANG H J, ZHOU M, ZHANG M Y, et al. Operational mechanism and cost-benefit analysis of pumped storage plant in power market environment[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(6): 71-80.
|
19 |
白雪平. 磷酸铁锂电池储能系统的应用[J]. 高科技与产业化, 2016(4): 71-73.
|
|
BAI X P. Application of LFP battery energy storage system[J]. High-Technology & Industrialization, 2016(4): 71-73.
|
20 |
柴明哲, 高赐威, 陈涛, 等. 江苏省工业用户配置储能的经济性研究[J]. 电力需求侧管理, 2021, 23(3): 47-51.
|
|
CHAI M Z, GAO C W, CHEN T, et al. Research on the economics of energy storage allocation for industrial users in Jiangsu province[J]. Power Demand Side Management, 2021, 23(3): 47-51.
|
21 |
方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158.
|
|
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158.
|
22 |
张文亮, 丘明, 来小康. 储能技术在电力系统中的应用[J]. 电网技术, 2008, 32(7): 1-9.
|
|
ZHANG W L, QIU M, LAI X K. Application of energy storage technologies in power grids[J]. Power System Technology, 2008, 32(7): 1-9.
|
23 |
孟祥飞, 庞秀岚, 崇锋, 等. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术, 2019, 8(S1): 38-42.
|
|
MENG X F, PANG X L, CHONG F, et al. Application analysis and prospect of electrochemical energy storage in power grid[J]. Energy Storage Science and Technology, 2019, 8(S1): 38-42.
|
24 |
李建林, 杨水丽, 高凯. 大规模储能系统辅助常规机组调频技术分析[J]. 电力建设, 2015, 36(5): 105-110.
|
|
LI J L, YANG S L, GAO K. Frequency modulation technology for conventional units assisted by large scale energy storage system[J]. Electric Power Construction, 2015, 36(5): 105-110.
|
25 |
孙钢虎, 王小辉, 陈远志, 等. 储能联合发电机组调频经济效益分析[J]. 电源学报, 2020, 18(4): 151-156.
|
|
SUN G H, WANG X H, CHEN Y Z, et al. Analysis of economic benefits of frequency modulation by energy storage combined generating units[J]. Journal of Power Supply, 2020, 18(4): 151-156.
|
26 |
李欣然, 黄际元, 陈远扬, 等. 大规模储能电源参与电网调频研究综述[J]. 电力系统保护与控制, 2016, 44(7): 145-153.
|
|
LI X R, HUANG J Y, CHEN Y Y, et al. Review on large-scale involvement of energy storage in power grid fast frequency regulation[J]. Power System Protection and Control, 2016, 44(7): 145-153.
|
27 |
宁阳天, 李相俊, 董德华, 等. 储能系统平抑风光发电出力波动的研究方法综述[J]. 供用电, 2017, 34(4): 2-11.
|
|
NING Y T, LI X J, DONG D H, et al. A review of the research methods of smoothing wind/PV power output with energy storage systems[J]. Distribution & Utilization, 2017, 34(4): 2-11.
|