储能科学与技术 ›› 2022, Vol. 11 ›› Issue (7): 2103-2113.doi: 10.19799/j.cnki.2095-4239.2022.0120
收稿日期:
2022-03-07
修回日期:
2022-03-22
出版日期:
2022-07-05
发布日期:
2022-06-29
通讯作者:
薛文东
E-mail:g20208393@xs.ustb.edu.cn;xuewendong@ustb.edu.cn
作者简介:
霍思达(1997—),男,硕士研究生,研究方向为新能源材料及复合功能材料,E-mail:g20208393@xs.ustb.edu.cn;
基金资助:
Sida HUO(), Wendong XUE(), Xinli LI, Yong LI
Received:
2022-03-07
Revised:
2022-03-22
Online:
2022-07-05
Published:
2022-06-29
Contact:
Wendong XUE
E-mail:g20208393@xs.ustb.edu.cn;xuewendong@ustb.edu.cn
摘要:
固态电解质具备高能量密度、高容量、高安全性等特点被认为是理想的电解质材料。无机固态电解质具有较高的离子电导率和力学性能,但其与电极间阻抗高、接触差;聚合物固态电解质有良好的柔性和可加工性,但离子电导率远远达不到应用要求。有机-无机复合电解质兼备两者的优点,是目前最适用于应用推广的材料之一,但在离子电导率和电化学稳定性方面还差强人意。本文基于Web of Science核心合集数据库回顾了近30年关于有机-无机复合电解质的相关文献,利用CiteSpace对相关数据进行了可视化整理。并针对复合电解质发展过程的重要节点和近5年的研究热点进行了深入分析。结果发现目前复合电解质方向研究热度正处于指数上升阶段;复合电解质的最新研究聚焦于凝胶态、单离子导体结构和聚碳酸酯基材料等方向;界面是复合电解质研究的关键问题,是近五年突现强度最高的关键词。关于下阶段复合电解质的开发要围绕:①半固态复合电解质的材料选择和结构设计;②电解质内部相间界面结构和传输机理的研究;③电解质与电极间构建稳定的弹性SEI/CEI膜。
中图分类号:
霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113.
Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113.
表2
高被引作者统计"
被引作者 | 被引频次 | 中介中心性 | 主要贡献与研究 | 近五年研究动态 |
---|---|---|---|---|
Armand M | 1534 | 0.04 | “摇椅式”电池 | 全固态电池、单离子导体、新型导电材料[ |
Croce F | 1391 | 0.05 | 纳米填料复合电解质[ | 无机纳米颗粒对电极和电解质的调控[ |
Scrosati B | 971 | 0.01 | 复合电解质纳米结构设计、锂-空气电池的开发 | 聚合物电解质、纤维电极、界面 |
Appetecchi G B | 876 | 0.03 | 复合电解质传导机理与界面问题[ | 离子液体电解质、全固态电解质 |
Tarascon J M | 867 | 0.03 | 纳米结构电解质、电极 | 固态电解质 |
Stephan A M | 825 | 0.02 | 复合电解质[ | 复合电解质[ |
Watanabe M | 821 | 0.03 | 离子液体电解质的应用、复合电解质界面接触[ | 固态电解质、第一性原理计算 |
Bruce P G | 792 | 0.03 | 复合电解质有机相改性[ | 全固态电池、检测技术 |
1 | 刘英军, 刘亚奇, 张华良, 等. 我国储能政策分析与建议[J]. 储能科学与技术, 2021, 10(4): 1463-1473. |
LIU Y J, LIU Y Q, ZHANG H L, et al. Energy storage policy analysis and suggestions in China[J]. Energy Storage Science and Technology, 2021, 10(4): 1463-1473. | |
2 | ZHAI H W, XU P Y, NING M Q, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182-3187. |
3 | 许卓, 郑莉莉, 陈兵, 等. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
XU Z, ZHENG L L, CHEN B, et al. Overview of research on composite electrolytes for solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. | |
4 | TALEB O, BARZYCKI D C, POLANCO C G, et al. Assessing effective medium theories for conduction through lamellar composites[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122631. |
5 | BLATT M P, HALLINAN D T. Polymer blend electrolytes for batteries and beyond[J]. Industrial & Engineering Chemistry Research, 2021, 60(48): 17303-17327. |
6 | GAO H C, GUO B K, SONG J, et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(9): 1402235. |
7 | WIECZOREK W, FLORJANCZYK Z, STEVENS J R. Composite polyether based solid electrolytes[J]. Electrochimica Acta, 1995, 40(13/14): 2251-2258. |
8 | HALLINAN D T, BALSARA N P. Polymer electrolytes[J]. Annual Review of Materials Research, 2013, 43: 503-525. |
9 | CHEN C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. |
10 | CHEN C M. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences, 2004, 101(s1): 5303-5310. |
11 | 陈丽萍, 冯金奎, 田园, 等. 基于文献计量学的锂二次电池研究知识图谱分析[J]. 储能科学与技术, 2021, 10(3): 1196-1205. |
CHEN L P, FENG J K, TIAN Y, et al. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics[J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205. | |
12 | CHEN C M, SONG M. Visualizing a field of research: A methodology of systematic scientometric reviews[J]. PLoS One, 2019, 14(10): e0223994. |
13 | 胡华坤, 李新丽, 薛文东, 等. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J]. 储能科学与技术, 2022, 11(1): 379-396. |
HU H K, LI X L, XUE W D, et al. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(1): 379-396. | |
14 | 赵晏强, 李印结, 吴跃伟, 等. 基于文献计量和关键词的锂离子电池正极材料的研究进展[J]. 材料导报, 2014, 28(3): 140-145. |
ZHAO Y Q, LI Y J, WU Y W, et al. Research progress of cathode materials for lithium-ion battery based on literature metrology and keywords[J]. Materials Review, 2014, 28(3): 140-145. | |
15 | SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) X[J]. Journal of the Chemical Society, Chemical Communications, 1977(16): 578. |
16 | WRIGHT P V. Developments in polymer electrolytes for lithium batteries[J]. MRS Bulletin, 2002, 27(8): 597-602. |
17 | WRIGHT P V. Polymer electrolytes—the early days[J]. Electrochimica Acta, 1998, 43(10/11): 1137-1143. |
18 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
19 | YAMAMOTO O. Solid oxide fuel cells: Fundamental aspects and prospects[J]. Electrochimica Acta, 2000, 45(15/16): 2423-2435. |
20 | YANG X G, LIU T, GAO Y, et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3(12): 3002-3019. |
21 | LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials, 2019, 4(5): 312-330. |
22 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
23 | WANG X E, ZHU H J, GREENE G W, et al. Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning[J]. Journal of Materials Chemistry A, 2016, 4(25): 9873-9880. |
24 | ZHOU Y D, WANG X E, ZHU H J, et al. Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries[J]. Energy Storage Materials, 2018, 15: 407-414. |
25 | CROCE F, PERSI L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16): 2457-2461. |
26 | CROCE F, D' EPIFANIO A, HASSOUN J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid-State Letters, 2002, 5(3): A47. |
27 | ZHOU Y D, WANG X E, ZHU H J, et al. N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide-electrospun polyvinylidene fluoride composite electrolytes: Characterization and lithium cell studies[J]. Physical Chemistry Chemical Physics, 2017, 19(3): 2225-2234. |
28 | CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. |
29 | ZHONG Y, XIA X H, DENG S J, et al. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(1): 1701110. |
30 | APPETECCHI G B, CROCE F, PERSI L, et al. Transport and interfacial properties of composite polymer electrolytes[J]. Electrochimica Acta, 2000, 45(8/9): 1481-1490. |
31 | APPETECCHI G B, SCACCIA S, PASSERINI S. Investigation on the stability of the lithium-polymer electrolyte interface[J]. Journal of the Electrochemical Society, 2000, 147(12): 4448. |
32 | STEPHAN A M, NAHM K S. Review on composite polymer electrolytes for lithium batteries[J]. Polymer, 2006, 47(16): 5952-5964. |
33 | STEPHAN A M. Review on gel polymer electrolytes for lithium batteries[J]. European Polymer Journal, 2006, 42(1):21-42. |
34 | SURIYAKUMAR S, GOPI S, KATHIRESAN M, et al. Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries[J]. Electrochimica Acta, 2018, 285: 355-364. |
35 | ISMAIL I, NODA A, NISHIMOTO A, et al. XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes[J]. Electrochimica Acta, 2001, 46(10/11): 1595-1603. |
36 | CHRISTIE A M, LILLEY S J, STAUNTON E, et al. Increasing the conductivity of crystalline polymer electrolytes[J]. Nature, 2005, 433(7021): 50-53. |
37 | KIMURA K, YAJIMA M, TOMINAGA Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochemistry Communications, 2016, 66: 46-48. |
38 | TAO X Y, LIU Y Y, LIU W, et al. Solid-state lithium-sulfur batteries operated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano Letters, 2017, 17(5): 2967-2972. |
39 | WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301. |
40 | FU K K, GONG Y H, DAI J Q, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7094-7099. |
41 | LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2: 17035. |
42 | ZHANG J F, MA C, LIU J T, et al. Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery[J]. Journal of Membrane Science, 2016, 509: 138-148. |
43 | ONISHI K, MATSUMOTO M, NAKACHO Y, et al. Synthesis of aluminate polymer complexes as single-ionic solid electrolytes[J]. Chemistry of Materials, 1996, 8(2): 469-472. |
44 | KALITA M, BUKAT M, CIOSEK M, et al. Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes[J]. Electrochimica Acta, 2005, 50(19): 3942-3948. |
45 | PLEWA A, CHYLIŃSKI F, KALITA M, et al. Influence of macromolecular additives on transport properties of lithium organic electrolytes[J]. Journal of Power Sources, 2006, 159(1): 431-437. |
46 | ZHANG J J, ZANG X, WEN H J, et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5(10): 4940-4948. |
47 | ZHANG X K, XIE J, SHI F F, et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Letters, 2018, 18(6): 3829-3838. |
48 | HOROWITZ Y, LIFSHITZ M, GREENBAUM A, et al. Review—polymer/ceramic interface barriers: The fundamental challenge for advancing composite solid electrolytes for Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160514. |
49 | WANG Y, ZANELOTTI C J, WANG X E, et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nature Materials, 2021, 20(9): 1255-1263. |
50 | ZHAO Y R, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 301: 47-53. |
51 | CHEN B, HUANG Z, CHEN X T, et al. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery[J]. Electrochimica Acta, 2016, 210: 905-914. |
52 | HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical "ceramic-in-polymer" and "polymer-in-ceramic" electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004. |
[1] | 张玉龙, 栾伟玲, 吴森明. 基于外特性方法的锂离子电池析锂及可逆锂回嵌定量分析[J]. 储能科学与技术, 2023, 12(2): 529-535. |
[2] | 杨帆, 和嘉睿, 陆鸣, 陆玲霞, 于淼. 基于BP-UKF算法的锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(2): 552-559. |
[3] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[4] | 朱文凯, 周星, 刘亚杰, 张涛, 宋元明. 基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法[J]. 储能科学与技术, 2023, 12(2): 570-578. |
[5] | 王志福, 罗崴, 闫愿, 徐崧, 郝文美, 周聪林. 基于GAPSO-FNN神经网络的锂离子电池传感器故障诊断[J]. 储能科学与技术, 2023, 12(2): 602-608. |
[6] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
[7] | 王放放, 冯祥明, 赵光金, 夏大伟, 胡玉霞, 陈卫华. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
[8] | 董乐贤, 郑群, 黄悦, 田志鹏, 刘建平, 王超, 梁波, 雷励斌. 管状固体氧化物燃料电池前沿技术研究进展[J]. 储能科学与技术, 2023, 12(1): 131-138. |
[9] | 韩江浩, 王晓丹, 李奇松, 李慧芳, 王睿, 许刚. 锂离子电池加速循环测试研究[J]. 储能科学与技术, 2023, 12(1): 255-262. |
[10] | 潘岳, 韩雪冰, 欧阳明高, 任华华, 刘巍, 闫月君. 锂离子电池内短路检测算法及其在实际数据中的应用[J]. 储能科学与技术, 2023, 12(1): 198-208. |
[11] | 郑瀚, 来沛霈, 田晓华, 孙卓, 张哲娟. 多级碳复合的大尺寸硅颗粒在锂离子电池负极中的性能[J]. 储能科学与技术, 2023, 12(1): 23-34. |
[12] | 何骁龙, 石晓龙, 王子阳, 韩路豪, 姚斌. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(1): 218-226. |
[13] | 邓林旺, 冯天宇, 舒时伟, 郭彬, 张子峰. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
[14] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[15] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||