储能科学与技术 ›› 2022, Vol. 11 ›› Issue (7): 2305-2315.doi: 10.19799/j.cnki.2095-4239.2021.0665
收稿日期:2021-12-13
修回日期:2022-01-18
出版日期:2022-07-05
发布日期:2022-06-29
通讯作者:
谢林柏
E-mail:shunmin.yi@outlook.com;xie_linbo@jiangnan.edu.cn
作者简介:易顺民(1998—),男,硕士研究生,研究方向为锂离子电池寿命预测与健康管理,E-mail:shunmin.yi@outlook.com;
基金资助:
Shunmin YI(
), Linbo XIE(
), Li PENG
Received:2021-12-13
Revised:2022-01-18
Online:2022-07-05
Published:2022-06-29
Contact:
Linbo XIE
E-mail:shunmin.yi@outlook.com;xie_linbo@jiangnan.edu.cn
摘要:
锂离子电池作为各类储能系统与设备的重要组成部分,准确预测锂离子电池的剩余使用寿命对于保障电池相关产业和设施的可靠性与安全性起着关键作用。针对锂离子电池剩余寿命预测中存在的非平稳、非线性特性导致单一数据驱动方法的预测精度低、泛化性能差等问题,提出了一种基于变分滤波、数据规整和深度融合网络的数据驱动融合(VF-DW-DFN)方法。首先,利用变分滤波法去除原始电池退化序列中的随机噪声干扰,得到相对平稳的退化特征数据。然后,采用最优嵌入法构造预测滑窗,实现特征数据规整,减少信息损失。其次,设计了一种新型深度融合网络对电池非线性退化数据进行建模,辨识电池数据中的退化模式,实现最终的锂离子电池剩余寿命预测。最后,在钴酸锂锂离子电池数据集上进行了剩余寿命预测实验,实验预测的平均均方根误差为1.41%,平均剩余寿命绝对误差小于2个循环周期。实验结果表明所提出的方法泛化性能好,预测精度高,误差小,能够对锂离子电池的退化过程进行有效建模和准确预测。
中图分类号:
易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315.
Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN[J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315.
| 1 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
| LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. | |
| 2 | OMARIBA Z B, ZHANG L J, SUN D B. Review on health management system for lithium-ion batteries of electric vehicles[J]. Electronics, 2018, 7: 72. |
| 3 | 袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状[J]. 自动化学报, 2020, 46(10): 2013-2030. |
| YUAN Y, ZHANG Y, DING H. Research on key technology of industrial artificial intelligence and its application in predictive maintenance[J]. Acta Automatica Sinica, 2020, 46(10): 2013-2030. | |
| 4 | ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24. |
| 5 | 康鑫, 时玮, 陈洪涛. 基于锂离子电池简化电化学模型的参数辨识[J]. 储能科学与技术, 2020, 9(3): 969-978. |
| KANG X, SHI W, CHEN H T. Parameter identification based on simplified electrochemical model of lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 969-978. | |
| 6 | 朱奕楠, 吕桃林, 赵芝芸, 等. 基于并行卡尔曼滤波器的锂离子电池荷电状态估计[J]. 储能科学与技术, 2021, 10(6): 2352-2362. |
| ZHU Y N, LÜ T L, ZHAO Z Y, et al. State of charge estimation of lithium ion battery based on parallel Kalman filter[J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362. | |
| 7 | 任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. |
| REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. | |
| 8 | CHANG Y, FANG H J, ZHANG Y. A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery[J]. Applied Energy, 2017, 206: 1564-1578. |
| 9 | WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643. |
| 10 | 陈翌, 白云飞, 何瑛. 数据驱动的锂电池健康状态估算方法比较[J]. 储能科学与技术, 2019, 8(6): 1204-1210. |
| CHEN Y, BAI Y F, HE Y. Comparison of data-driven lithium battery state of health estimation methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1204-1210. | |
| 11 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
| 12 | PATIL M A, TAGADE P, HARIHARAN K S, et al. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation[J]. Applied Energy, 2015, 159: 285-297. |
| 13 | CHANG Y, FANG H J. A hybrid prognostic method for system degradation based on particle filter and relevance vector machine[J]. Reliability Engineering & System Safety, 2019, 186: 51-63. |
| 14 | 李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384. |
| LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. | |
| 15 | 陈峥, 李磊磊, 舒星, 等. 基于特征处理与径向基神经网络的锂电池剩余容量估算方法[J]. 储能科学与技术, 2021, 10(1): 261-270. |
| CHEN Z, LI L L, SHU X, et al. Efficient remaining capacity estimation method for LIB based on feature processing and the RBF neural network[J]. Energy Storage Science and Technology, 2021, 10(1): 261-270. | |
| 16 | CHEN L, ZHANG Y, ZHENG Y, et al. Remaining useful life prediction of lithium-ion battery with optimal input sequence selection and error compensation[J]. Neurocomputing, 2020, 414: 245-254. |
| 17 | XUE Z W, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression[J]. Neurocomputing, 2020, 376: 95-102. |
| 18 | SATEESH BABU G, ZHAO P L, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Database Systems for Advanced Applications, 2016. |
| 19 | MA G J, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]. Applied Energy, 2019, 253: 113626. |
| 20 | 易灵芝, 张宗光, 范朝冬, 等. 基于EEMD-GSGRU的锂电池寿命预测[J]. 储能科学与技术, 2020, 9(5): 1566-1573. |
| YI L Z, ZHANG Z G, FAN C D, et al. Life prediction of lithium battery based on EEMD-GSGRU[J]. Energy Storage Science and Technology, 2020, 9(5): 1566-1573. | |
| 21 | QIN T C, ZENG S K, GUO J B, et al. A rest time-based prognostic framework for state of health estimation of lithium-ion batteries with regeneration phenomena[J]. Energies, 2016, 9(11): 896. |
| 22 | DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
| 23 | BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2010, 3(1): 1-122. |
| 24 | CAO L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43-50. |
| 25 | SHEN Z P, ZHANG Y M, LU J W, et al. SeriesNet: A generative time series forecasting model[C]//2018 International Joint Conference on Neural Networks (IJCNN). July 8-13, 2018, Rio de Janeiro, Brazil. IEEE, 2018: 1-8. |
| 26 | LEA C, FLYNN M D, VIDAL R, et al. Temporal convolutional networks for action segmentation and detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 1003-1012. |
| 27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. |
| 28 | CHANG S Y, ZHANG Y, HAN W, et al. Dilated recurrent neural networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2017: 76-86. |
| 29 | LAI G K, CHANG W C, YANG Y M, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//SIGIR '18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018: 95-104. |
| 30 | SAHA B, GOEBEL K. Battery data set[R]. NASA Ames Prognostics Data Repository, 2007. |
| 31 | LIU D T, ZHOU J B, LIAO H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(6): 915-928. |
| 32 | FAN J M, FAN J P, LIU F, et al. A novel machine learning method based approach for Li-ion battery prognostic and health management[J]. IEEE Access, 2019, 7: 160043-160061. |
| [1] | 张玉龙, 栾伟玲, 吴森明. 基于外特性方法的锂离子电池析锂及可逆锂回嵌定量分析[J]. 储能科学与技术, 2023, 12(2): 529-535. |
| [2] | 杨帆, 和嘉睿, 陆鸣, 陆玲霞, 于淼. 基于BP-UKF算法的锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(2): 552-559. |
| [3] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
| [4] | 朱文凯, 周星, 刘亚杰, 张涛, 宋元明. 基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法[J]. 储能科学与技术, 2023, 12(2): 570-578. |
| [5] | 王志福, 罗崴, 闫愿, 徐崧, 郝文美, 周聪林. 基于GAPSO-FNN神经网络的锂离子电池传感器故障诊断[J]. 储能科学与技术, 2023, 12(2): 602-608. |
| [6] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
| [7] | 王放放, 冯祥明, 赵光金, 夏大伟, 胡玉霞, 陈卫华. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
| [8] | 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. |
| [9] | 韩江浩, 王晓丹, 李奇松, 李慧芳, 王睿, 许刚. 锂离子电池加速循环测试研究[J]. 储能科学与技术, 2023, 12(1): 255-262. |
| [10] | 潘岳, 韩雪冰, 欧阳明高, 任华华, 刘巍, 闫月君. 锂离子电池内短路检测算法及其在实际数据中的应用[J]. 储能科学与技术, 2023, 12(1): 198-208. |
| [11] | 郑瀚, 来沛霈, 田晓华, 孙卓, 张哲娟. 多级碳复合的大尺寸硅颗粒在锂离子电池负极中的性能[J]. 储能科学与技术, 2023, 12(1): 23-34. |
| [12] | 何骁龙, 石晓龙, 王子阳, 韩路豪, 姚斌. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(1): 218-226. |
| [13] | 邓林旺, 冯天宇, 舒时伟, 郭彬, 张子峰. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
| [14] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
| [15] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||