1 |
WENNERSTEN R, SUN Q, LI H L. The future potential for Carbon Capture and Storage in climate change mitigation-an overview from perspectives of technology, economy and risk[J]. Journal of Cleaner Production, 2015, 103: 724-736.
|
2 |
International renewable energy agency. Renewable Energy Statistics 2020[R]. Abu Dhabi: IRENA, 2020.
|
3 |
任斌. 新能源发电技术在电力系统中的应用浅谈[J]. 中国设备工程, 2022(18): 196-198.
|
|
REN B. Discussion on the application of new energy power generation technology in power system[J]. China Plant Engineering, 2022(18): 196-198.
|
4 |
汪鹏. 储能技术在新能源电力系统的应用研究[J]. 中国石油和化工标准与质量, 2022, 42(24): 172-174.
|
|
WANG P. Research on application of energy storage technology in new energy power system[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(24): 172-174.
|
5 |
亢亚军. 储能技术在新能源电力系统中的应用[J]. 科技创新与应用, 2022, 12(28): 166-169.
|
|
KANG Y J. Application of energy storage technology in new energy power system[J]. Technology Innovation and Application, 2022, 12(28): 166-169.
|
6 |
DI M T, HU L, GAO L, et al. Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries[J]. Chemical Engineering Journal, 2020, 399: https://doi.org/10.1016/j.cej.2020.125833.
|
7 |
NOH C, SERHIICHUK D, NAJIBAH M, et al. Optimizing the performance of meta-polybenzimidazole membranes in vanadium redox flow batteries by adding an alkaline pre-swelling step[J]. Chemical Engineering Journal, 2021, 407: https://doi.org/10.1016/j.cej.2020.126574.
|
8 |
SHIN M, NOH C, CHUNG Y, et al. All iron aqueous redox flow batteries using organometallic complexes consisting of iron and 3-[bis (2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid ligand and ferrocyanide as redox couple[J]. Chemical Engineering Journal, 2020, 398: https://doi.org/10.1016/j.cej.2020.125631.
|
9 |
MA Q, XING L, SU H N, et al. Numerical investigation on the dispersion effect in vanadium redox flow battery[J]. Chemical Engineering Journal, 2020, 393: https://doi.org/10.1016/j.cej.2020. 124753.
|
10 |
SUM E, SKYLLAS-KAZACOS M. A study of the V(II)/V(III) redox couple for redox flow cell applications[J]. Journal of Power Sources, 1985, 15(2/3): 179-190.
|
11 |
SUM E, RYCHCIK M, SKYLLAS-KAZACOS M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery[J]. Journal of Power Sources, 1985, 16(2): 85-95.
|
12 |
SÁNCHEZ-DÍEZ E, VENTOSA E, GUARNIERI M, et al. Redox flow batteries: Status and perspective towards sustainable stationary energy storage[J]. Journal of Power Sources, 2021, 481: 228804.
|
13 |
ZHANG H M, LU W J, LI X F. Progress and perspectives of flow battery technologies[J].Electrochemical Energy Reviews, 2019, 2(3): 492-506.
|
14 |
POLI N, SCHÄFFER M, TROVÒ A, et al. Novel electrolyte rebalancing method for vanadium redox flow batteries[J]. Chemical Engineering Journal, 2021, 405: https://doi.org/10.1016/j.cej.2020.126583..
|
15 |
LI X F, ZHANG H M, MAI Z S, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4): 1147-1160.
|
16 |
NOH C, CHUNG Y, KWON Y. Highly stable aqueous organometallic redox flow batteries using cobalt triisopropanolamine and iron triisopropanolamine complexes[J]. Chemical Engineering Journal, 2021, 405: https://doi.org/10.1016/j.cej.2020.126966.
|
17 |
LEE W, PARK G, KWON Y. Alkaline aqueous organic redox flow batteries of high energy and power densities using mixed naphthoquinone derivatives[J]. Chemical Engineering Journal, 2020, 386: https://doi.org/10.1016/j.cej.2020.123985.
|
18 |
GAO F, DU H, WANG S N, et al. A comparative study of extracting vanadium from vanadium titano-magnetite ores: Calcium salt roasting vs sodium salt roasting[J]. Mineral Processing and Extractive Metallurgy Review, 2022, doi: 10.1080/08827508. 2022.2069105.
|
19 |
TANG Z D, ZHOU Z Y, JIN J P, et al. Vanadium extraction from stone coal using a novel two-stage roasting technology[J]. Fuel, 2022, 321: 124031.
|
20 |
ZHU X B, LI W, GUAN X M. Vanadium extraction from titano-magnetite by hydrofluoric acid[J]. International Journal of Mineral Processing, 2016, 157: 55-59.
|
21 |
DIAO J, XIE B, WANG Y, et al. Mineralogical characterisation of vanadium slag under different treatment conditions[J]. Ironmaking & Steelmaking, 2009, 36(6): 476-480.
|
22 |
陈东辉. 钒产业2021年年度评价[J]. 河北冶金, 2022(12): 19-30.
|
|
CHEN D H. Vanadium industry annual review of year 2021[J]. Hebei Metallurgy, 2022(12): 19-30.
|
23 |
梁精龙, 邵雪莹, 王乐, 等.钙化焙烧-微波酸浸对钢渣中钒铁浸出的影响[J/OL]. 中国冶金, 2022: 1-9[2023-03-03]. https://doi.org/10.13228/j.boyuan.issn1006-9356.20220844.
|
|
LIANG J L, SHAO X Y, WANG, et al. Effect of calcification roasting-microwave acid leaching on leaching of iron vanadium from steel slag[J/OL]. China metallurgy, 2022: 1-9[2023-03-03]. https://doi.org/10.13228/j.boyuan.issn1006-9356.20220844.
|
24 |
胡佩伟, 谢志诚, 胡兵, 等. 含钒固废综合利用现状及发展[J]. 矿产保护与利用, 2020, 40(5): 144-152.
|
|
HU P W, XIE Z C, HU B, et al. Comprehensive utilization status and development of vanadium-bearing solid wastes[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 144-152.
|
25 |
王浩, 卢明亮, 万贺利. 提钒工艺研究现状及进展[J]. 河北冶金, 2021(12): 6-9, 28.
|
|
WANG H, LU M L, WAN H L. Research status and progress of vanadium extraction process[J]. Hebei Metallurgy, 2021(12): 6-9, 28.
|
26 |
何佳, 姜鑫, 纪恒, 等. 钒钛磁铁矿直接提钒的研究进展[J]. 中国冶金, 2023, 33(3): 29-38.
|
|
HE J, JIANG X, JI H, et al. Research progress on direct extraction of vanadium from vanadium titanium magnetite[J]. China Metallurgy, 2023, 33(3): 29-38.
|
27 |
高慧阳,姜涛,李曦. 微波钙化焙烧高铬型钒渣分离钒、铬[C]//第三届钒钛微合金化高强钢开发应用技术暨第四届钒产业先进技术交流会, 重庆, 2017: 200-207.
|
28 |
张玉柱, 雷云波, 李俊国, 等. 钢渣矿相组成及其显微形貌分析[J]. 冶金分析, 2011, 31(9): 11-17.
|
|
ZHANG Y Z, LEI Y B, LI J G, et al. Analysis of mineralogical composition in steel slag and its microstructure[J]. Metallurgical Analysis, 2011, 31(9): 11-17.
|
29 |
马家骏, 史培阳, 刘承军, 等. 采用钙化焙烧—铵盐浸出工艺从钒渣中浸出钒[J]. 湿法冶金, 2021, 40(4): 283-288.
|
|
MA J J, SHI P Y, LIU C J, et al. Extraction of vanadium from vanadium slag by the process of calcification roasting-Ammonium leaching[J]. Hydrometallurgy of China, 2021, 40(4): 283-288.
|
30 |
陈书锐, 杨绍利, 马兰, 等. 盐酸浸出钛石膏实验研究[J]. 无机盐工业, 2020, 52(2): 65-68.
|
|
CHEN S R, YANG S L, MA L, et al. Study on leaching of titanium gypsum with hydrochloric acid[J]. Inorganic Chemicals Industry, 2020, 52(2): 65-68.
|
31 |
张成强, 孙传尧, 印万忠, 等. 以氟化钙为助浸剂的某伊利石型含钒石煤酸浸提钒工艺[J]. 矿产综合利用, 2019(5): 42-47, 41.
|
|
ZHANG C Q, SUN C Y, YIN W Z, et al. Acid leaching of vanadium from an llite-type vanadium-containing stone using calcium fluoride as aid-leaching reagent[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 42-47, 41.
|
32 |
叶国华, 谢禹, 胡艺博, 等. 低品位石煤钒矿低温硫酸化焙烧-水浸提钒研究[J]. 稀有金属, 2020, 44(7): 753-761.
|
|
YE G H, XIE Y, HU Y B, et al. Vanadium extraction from low-grade stone coal vanadium ore by low-temperature sulphating roasting-water leaching[J]. Chinese Journal of Rare Metals, 2020, 44(7): 753-761.
|
33 |
吕昌晓, 张廷安, 张莹, 等. 从钙化焙烧-酸浸尾渣中综合回收钒的研究[J]. 稀有金属, 2020, 44(11): 1208-1214.
|
|
LÜ C X, ZHANG T A, ZHANG Y, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020, 44(11): 1208-1214.
|
34 |
陈书锐. 钛白废酸浸出低品位含钒钢渣提钒工艺研究[D]. 成都: 西华大学.
|
|
CHEN S R. Study on extraction of vanadium from low-grade vanadium-bearing steel slag by leaching with waste acid from titanium dioxide[D]. Chengdu: Xihua University.
|