储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1453-1460.doi: 10.19799/j.cnki.2095-4239.2023.0099
• 喜迎东北大学建校百年-储能电池关键材料与循环技术专刊 • 上一篇 下一篇
王海1,2,3(), 边煜华1, 王佳东2,3, 刘朝阳1, 张杰2,3, 姚健1, 高宣雯1(), 刘朝孟1, 骆文彬1
收稿日期:
2023-03-01
修回日期:
2023-03-16
出版日期:
2023-05-05
发布日期:
2023-05-29
通讯作者:
高宣雯
E-mail:545679042@qq.com;gaoxuanwen@mail.neu.edu.cn
作者简介:
王海(1978—),男,硕士,博士研究生,研究方向为能源材料回收,E-mail:545679042@qq.com;
基金资助:
Hai WANG1,2,3(), Yuhua BIAN1, Jiadong WANG2,3, Zhaoyang LIU1, Jie ZHANG2,3, Jian YAO1, Xuanwen GAO1(), Zhaomeng LIU1, Wenbin LUO1
Received:
2023-03-01
Revised:
2023-03-16
Online:
2023-05-05
Published:
2023-05-29
Contact:
Xuanwen GAO
E-mail:545679042@qq.com;gaoxuanwen@mail.neu.edu.cn
摘要:
回收退役三元锂电池中的有价金属,可减少环境污染和缓解资源匮乏等问题。本研究通过一种先进、简单的前端提锂工艺,将拆解退役锂离子电池得到的正负极混合粉置于管式炉中,在750 ℃下对管式炉维持一定的压力并持续通入二氧化碳焙烧1 h,焙烧后得到含锂焙烧粉。再往焙烧粉中加入一定量的水制成浆料,并持续性通入二氧化碳气体,经固液分离后得到含碳酸氢锂的溶液,再将溶液经加热分解后制备得到纯度为99.5%的电池级碳酸锂。整套工艺锂综合浸出率可达99.05%,回收率可达99%,在实现高回收率的基础上兼具成本低效益高的优势,为目前较为先进的回收技术之一,能够有效解决目前锂回收难、回收成本高、经济效益差的问题。
中图分类号:
王海, 边煜华, 王佳东, 刘朝阳, 张杰, 姚健, 高宣雯, 刘朝孟, 骆文彬. 退役锂离子电池锂资源回收工艺[J]. 储能科学与技术, 2023, 12(5): 1453-1460.
Hai WANG, Yuhua BIAN, Jiadong WANG, Zhaoyang LIU, Jie ZHANG, Jian YAO, Xuanwen GAO, Zhaomeng LIU, Wenbin LUO. Retired lithium battery recycling and battery-grade lithium carbonate preparation[J]. Energy Storage Science and Technology, 2023, 12(5): 1453-1460.
1 | LI M, LU J. Cobalt in lithium-ion batteries[J]. Science, 2020, 367(6481): 979-980. |
2 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. |
3 | WEI N, HE Y Q, ZHANG G W, et al. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting[J]. Journal of Environmental Management, 2023, 329: 117107. |
4 | ZHA Y C, FEI Z T, YANG Z L, et al. High separation efficiency of ternary cathode materials from spent lithium-ion batteries by ternary molten Li-salt method[J]. Sustainable Materials and Technologies, 2023, 35: e00575. |
5 | YANG C, ZHANG J L, LIANG G Q, et al. An advanced strategy of "metallurgy before sorting" for recycling spent entire ternary lithium-ion batteries[J]. Journal of Cleaner Production, 2022, 361: 132268. |
6 | MA X T, LUQMAN A, WANG Y. Li-ion battery recycling challenges[J]. Chem, 2021, 7(11): 2843-2847. |
7 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
8 | AZHARI L, BONG S, MA X T, et al. Recycling for all solid-state lithium-ion batteries[J]. Matter, 2020, 3(6). |
9 | WU J, MACKENZIE A, SHARMA N. Recycling lithium-ion batteries: Adding value with multiple lives[J]. Green Chemistry, 2020, 22(7): 2244-2254. |
10 | BAUM Z J, BIRD R E, YU X, et al. Lithium-ion battery recycling-Overview of techniques and trends[J]. ACS Energy Letters, 2022, 7(2): 712-719. |
11 | PIĄTEK J, AFYON S, BUDNYAK T M, et al. Sustainable Li-ion batteries: Chemistry and recycling[J]. Advanced Energy Materials, 2021, 11(43): 2003456. |
12 | LI L, GE J, CHEN R J, et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J]. Waste Management, 2010, 30(12): 2615-2621. |
13 | 赵峰, 蒋训雄, 汪胜东, 等. 从废旧三元锂电池正极材料回收镍钴锂[J]. 矿冶, 2022, 31(5): 71-75. |
ZHAO F, JIANG X X, WANG S D, et al. Recovery of nickel, cobalt and lithium from spent ternary lithium ion batteries[J]. Mining and Metallurgy, 2022, 31(5): 71-75. | |
14 | 楚玮. 废旧锂电池正极片中有价金属回收与LiNi0.6Co0.2Mn0.2O2正极材料再制备技术研究[D]. 淄博: 山东理工大学, 2021.CHU W. Study on recovery of valuable metals in the cathode sheet of waste lithium batteries and reproduction of LiNi0.6Co0.2Mn0.2O2 cathode material[D]. Zibo: Shandong University of Technology, 2021. |
15 | 曹玲, 刘雅丽, 康铎之, 等. 废旧锂电池中有价金属回收及三元正极材料的再制备[J]. 化工进展, 2019, 38(5): 2499-2505. |
CAO L, LIU Y L, KANG D Z, et al. Recovery of valuable metals from spent lithium ion battery and the resynthesis of Li(Ni1/3Co1/3Mn1/3)O2 materials[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2499-2505. | |
16 | 陈思锦. 废旧锂离子电池回收及其资源化利用研究[D]. 上海: 上海交通大学, 2018.CHEN S J. Study on recycling and resource utilization of waste lithium-ion batteries[D]. Shanghai: Shanghai Jiao Tong University, 2018. |
17 | 蒋力, 李德鹏, 徐羚, 等. 废旧三元正极材料锂离子电池的资源化利用技术[J]. 中国资源综合利用, 2013, 31(11): 46-50. |
JIANG L, LI D P, XU L, et al. The recycling of waste lithium-ion batteries with LiNixCoyMn1- x- yO2 cathode material[J]. China Resources Comprehensive Utilization, 2013, 31(11): 46-50. | |
18 | 丘克强, 吴倩, 湛志华. 废弃电路板环氧树脂真空热解及产物分析[J]. 中南大学学报(自然科学版), 2009, 40(5): 1209-1215. |
QIU K Q, WU Q, ZHAN Z H. Vacuum pyrolysis characteristics of waste printed circuit boards epoxy resin and analysis of liquid products[J]. Journal of Central South University (Science and Technology), 2009, 40(5): 1209-1215. | |
19 | 谢光炎, 凌云, 孙水裕. 废旧锂电池电极活性材料真空热解固氟研究[J]. 环境科学与技术, 2012, 35(2): 56-58, 158. |
XIE G Y, LING Y, SUN S Y. Vacuum pyrolysis of fluoride retention in electrode active material of lithium ion battery[J]. Environmental Science & Technology, 2012, 35(2): 56-58, 158. | |
20 | 揭晓武, 王成彦, 李敦钫, 等. 失效锂离子电池材料真空热处理及氨性浸出[J]. 环境工程学报, 2012, 6(5): 1699-1703. |
JIE X W, WANG C Y, LI D F, et al. Heating treatment of spent lithium-ion batteries and ammoniacal leaching of product of LiCoO2 reduced by carbon in vacuum[J]. Chinese Journal of Environmental Engineering, 2012, 6(5): 1699-1703. | |
21 | 姬海燕, 刘家印, 张捷菲, 等. 低温焦硫酸钾焙烧选择性回收退役三元锂电池中的锂[J]. 有色金属(冶炼部分), 2021(12): 51-56. |
JI H Y, LIU J Y, ZHANG J F, et al. Selective recovery of lithium from spent ternary lithium batteries by roasting with potassium pyrosulphate at low temperature[J]. Nonferrous Metals (Extractive Metallurgy), 2021(12): 51-56. | |
22 | 黄林波, 杨先锋. 废旧锂电池中锂的回收[J]. 湖南工业大学学报, 2020, 34(2): 61-65. |
HUANG L B, YANG X F. Recovery of lithium from spent lithium batteries[J]. Journal of Hunan University of Technology, 2020, 34(2): 61-65. | |
23 | YANG Y, SUN W, BU Y J, et al. Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10445-10453. |
24 | TANG Y Q, XIE H W, ZHANG B L, et al. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: Controlling the recovery of CoO or Co[J]. Waste Management, 2019, 97: 140-148. |
25 | WANG W Q, ZHANG Y C, LIU X G, et al. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil As the in situ reductant[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12222-12230. |
[1] | 吴毅, 孟亚宏, 张怡, 周铁, 刘继, 魏业文. 配电台区电池储能系统优化均衡控制研究[J]. 储能科学与技术, 2023, 12(5): 1655-1663. |
[2] | 韩路豪, 王子阳, 何骁龙, 何春汕, 石晓龙, 姚斌. 细水雾释放策略对大容量三元锂离子电池热失控火灾抑制效果的实验研究[J]. 储能科学与技术, 2023, 12(5): 1664-1674. |
[3] | 于会群, 胡哲豪, 彭道刚, 孙浩益. 退役动力电池回收及其在储能系统中梯次利用关键技术[J]. 储能科学与技术, 2023, 12(5): 1675-1685. |
[4] | 李林泽, 张向文. 基于组合频率阻抗特征的锂离子电池健康状态估算[J]. 储能科学与技术, 2023, 12(5): 1705-1712. |
[5] | 杨妮, 苏岳锋, 王联, 李宁, 马亮, 朱晨. 聚焦离子束显微镜技术在锂离子电池领域的研究进展[J]. 储能科学与技术, 2023, 12(4): 1283-1294. |
[6] | 赵立禹, 孙桓五, 刘世闯, 闫志远. 重卡辅助动力电池加热系统能耗对比及优化[J]. 储能科学与技术, 2023, 12(4): 1139-1147. |
[7] | 宋缙华, 张兴浩, 丰震河, 程广玉, 顾洪汇, 顾海涛, 王可. 基于原位参比的氧化亚硅-石墨复合负极循环衰减机制[J]. 储能科学与技术, 2023, 12(4): 1059-1065. |
[8] | 翟智, 王福金, 邸一, 马珮羽, 赵志斌, 陈雪峰. 基于分层对齐迁移学习的锂离子电池容量估计[J]. 储能科学与技术, 2023, 12(4): 1223-1233. |
[9] | 谭超, 王超. 功能化氧化石墨烯作为锂硫电池正极硫载体的性能研究[J]. 储能科学与技术, 2023, 12(4): 1025-1033. |
[10] | 婷婷, 林其杭, 刘长洋, 卞刘振, 孙超, 齐冀, 彭继华, 安胜利. 水系锌离子电池二氧化锰正极改性研究进展[J]. 储能科学与技术, 2023, 12(3): 754-767. |
[11] | 李奎杰, 楼平, 管敏渊, 莫金龙, 张炜鑫, 曹元成, 程时杰. 锂离子电池热失控多维信号演化及耦合机制研究综述[J]. 储能科学与技术, 2023, 12(3): 899-912. |
[12] | 常修亮, 李希超, 贾隆舟, 韦守李, 王敬豪, 戴作强, 郑莉莉. 过充循环老化电池产热特性[J]. 储能科学与技术, 2023, 12(3): 685-697. |
[13] | 刘子豪, 张雪松, 林达, 孙立清, 李正阳, 熊瑞. 基于扩展卡尔曼滤波的储能电池能量和功率状态联合估计方法[J]. 储能科学与技术, 2023, 12(3): 913-922. |
[14] | 郭向伟, 吴齐, 王晨, 许孝卓, 赵良军. 储能电池组多阈值自适应聚类群组均衡控制[J]. 储能科学与技术, 2023, 12(3): 889-898. |
[15] | 姚逸鸣, 栾伟玲, 陈莹, 孙敏. 基于光学显微镜的锂离子电池材料老化衰减原位研究进展[J]. 储能科学与技术, 2023, 12(3): 777-791. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||