| 1 | 何凤荣, 张啟文, 郭德超, 等. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. | 
																													
																						|  | HE F R, ZHANG Q W, GUO D C, et al. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor[J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. | 
																													
																						| 2 | AHN J, SONG Y, KIM Y J, et al. Redox-active ligand-mediated assembly for high-performance transition metal oxide nanoparticle-based pseudocapacitors[J]. Chemical Engineering Journal, 2023, 455: 140742. | 
																													
																						| 3 | BREZESINSKI T, WANG J, TOLBERT S H, et al. Next generation pseudocapacitor materials from sol-gel derived transition metal oxides[J]. Journal of Sol-Gel Science and Technology, 2011, 57(3): 330-335. | 
																													
																						| 4 | CUI M J, MENG X K. Overview of transition metal-based composite materials for supercapacitor electrodes[J]. Nanoscale Advances, 2020, 2(12): 5516-5528. | 
																													
																						| 5 | DIONIGI F, ZHU J, ZENG Z H, et al. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides[J]. Angewandte Chemie, 2021, 133(26): 14567-14578. | 
																													
																						| 6 | FU W B, ZHAO E B, REN X L, et al. Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors[J]. Advanced Energy Materials, 2018, 8(18): 1703454. | 
																													
																						| 7 | GHADIMI A M, GHASEMI S, OMRANI A, et al. Nickel cobalt LDH/graphene film on nickel-foam-supported ternary transition metal oxides for supercapacitor applications[J]. Energy & Fuels, 2023, 37(4): 3121-3133. | 
																													
																						| 8 | LANG X Y, HIRATA A, FUJITA T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4): 232-236. | 
																													
																						| 9 | LIU W F, ZHANG Z, ZHANG Y N, et al. Interior and exterior decoration of transition metal oxide through Cu0/Cu+ Co-doping strategy for high-performance supercapacitor[J].Nano-Micro Letters, 2021, 13(1): 1-14. | 
																													
																						| 10 | MA Y P, XIE X B, YANG W Y, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 906-924. | 
																													
																						| 11 | QIU H J, FANG G, GAO J J, et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction[J]. ACS Materials Letters, 2019, 1(5): 526-533. | 
																													
																						| 12 | SNYDER J, ASANITHI P, DALTON A B, et al. Stabilized nanoporous metals by dealloying ternary alloy precursors[J]. Advanced Materials, 2008, 20(24): 4883-4886. | 
																													
																						| 13 | YAO A Y, YANG H, WANG J Q, et al. Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses[J]. Journal of Alloys and Compounds, 2019, 772: 164-172. | 
																													
																						| 14 | WANG Z C, KANG J L, ZHANG S F, et al. Enhanced pseudocapacitance of amorphous oxy-hydroxides epitaxially grown on intermetallics nanofoam[J]. Journal of Alloys and Compounds, 2019, 788: 961-966. | 
																													
																						| 15 | ZHANG S F, DU B N, LI T T, et al. Self-combustion induced hierarchical nanoporous alloy transition toward high area property electrode for supercapacitor[J]. Journal of Alloys and Compounds, 2022, 900: 163443. | 
																													
																						| 16 | ZHANG S F, ZHANG Z J, LI H W, et al. Ultrahigh areal capacity of self-combusted nanoporous NiCuMn/Cu flexible anode for Li-ion battery[J]. Chemical Engineering Journal, 2020, 383: 123097. | 
																													
																						| 17 | FORGHANI M, DONNE S W. Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior[J]. Journal of the Electrochemical Society, 2018, 165(3): A664-A673. | 
																													
																						| 18 | GOGOTSI Y, PENNER R. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like?[J]. ACS Nano, 2018, 12(3): 2081-2083. | 
																													
																						| 19 | IQBAL M Z, HAIDER S S, SIDDIQUE S, et al. Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices[J]. Journal of Energy Storage, 2020, 27: 101056. | 
																													
																						| 20 | 韩俊伟, 肖菁, 陶莹, 等. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术,2022, 11(6): 1865-1873. | 
																													
																						|  | HAN J W, XIAO J, TAO Y, et al. Compact energy storage: Methodology with graphenes and the applications[J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. | 
																													
																						| 21 | ZHANG W L, GUO R, SUN J, et al. Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth[J]. Journal of Colloid and Interface Science, 2019, 553: 705-712. | 
																													
																						| 22 | ZHOU J S, HOU L, LUAN S R, et al. Nitrogen codoped unique carbon with 0.4 nm ultra-micropores for ultrahigh areal capacitance supercapacitors[J]. Small, 2018, 14(36): 1801897. | 
																													
																						| 23 | YASIN A S, MOHAMED A Y, MOHAMED I M A, et al. Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization[J]. Chemical Engineering Journal, 2019, 371: 166-181. | 
																													
																						| 24 | YAVUZ A, KAPLAN K, BEDIR M. Metal oxides composite electrode with high areal capacitance formed by thermal oxidation of stainless steel mesh[J].Journal of Solid State Electrochemistry, 2022, 26(6/7): 1333-1347. |