1 |
何凤荣, 张啟文, 郭德超, 等. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058.
|
|
HE F R, ZHANG Q W, GUO D C, et al. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor[J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058.
|
2 |
AHN J, SONG Y, KIM Y J, et al. Redox-active ligand-mediated assembly for high-performance transition metal oxide nanoparticle-based pseudocapacitors[J]. Chemical Engineering Journal, 2023, 455: 140742.
|
3 |
BREZESINSKI T, WANG J, TOLBERT S H, et al. Next generation pseudocapacitor materials from sol-gel derived transition metal oxides[J]. Journal of Sol-Gel Science and Technology, 2011, 57(3): 330-335.
|
4 |
CUI M J, MENG X K. Overview of transition metal-based composite materials for supercapacitor electrodes[J]. Nanoscale Advances, 2020, 2(12): 5516-5528.
|
5 |
DIONIGI F, ZHU J, ZENG Z H, et al. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides[J]. Angewandte Chemie, 2021, 133(26): 14567-14578.
|
6 |
FU W B, ZHAO E B, REN X L, et al. Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors[J]. Advanced Energy Materials, 2018, 8(18): 1703454.
|
7 |
GHADIMI A M, GHASEMI S, OMRANI A, et al. Nickel cobalt LDH/graphene film on nickel-foam-supported ternary transition metal oxides for supercapacitor applications[J]. Energy & Fuels, 2023, 37(4): 3121-3133.
|
8 |
LANG X Y, HIRATA A, FUJITA T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4): 232-236.
|
9 |
LIU W F, ZHANG Z, ZHANG Y N, et al. Interior and exterior decoration of transition metal oxide through Cu0/Cu+ Co-doping strategy for high-performance supercapacitor[J].Nano-Micro Letters, 2021, 13(1): 1-14.
|
10 |
MA Y P, XIE X B, YANG W Y, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 906-924.
|
11 |
QIU H J, FANG G, GAO J J, et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction[J]. ACS Materials Letters, 2019, 1(5): 526-533.
|
12 |
SNYDER J, ASANITHI P, DALTON A B, et al. Stabilized nanoporous metals by dealloying ternary alloy precursors[J]. Advanced Materials, 2008, 20(24): 4883-4886.
|
13 |
YAO A Y, YANG H, WANG J Q, et al. Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses[J]. Journal of Alloys and Compounds, 2019, 772: 164-172.
|
14 |
WANG Z C, KANG J L, ZHANG S F, et al. Enhanced pseudocapacitance of amorphous oxy-hydroxides epitaxially grown on intermetallics nanofoam[J]. Journal of Alloys and Compounds, 2019, 788: 961-966.
|
15 |
ZHANG S F, DU B N, LI T T, et al. Self-combustion induced hierarchical nanoporous alloy transition toward high area property electrode for supercapacitor[J]. Journal of Alloys and Compounds, 2022, 900: 163443.
|
16 |
ZHANG S F, ZHANG Z J, LI H W, et al. Ultrahigh areal capacity of self-combusted nanoporous NiCuMn/Cu flexible anode for Li-ion battery[J]. Chemical Engineering Journal, 2020, 383: 123097.
|
17 |
FORGHANI M, DONNE S W. Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior[J]. Journal of the Electrochemical Society, 2018, 165(3): A664-A673.
|
18 |
GOGOTSI Y, PENNER R. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like?[J]. ACS Nano, 2018, 12(3): 2081-2083.
|
19 |
IQBAL M Z, HAIDER S S, SIDDIQUE S, et al. Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices[J]. Journal of Energy Storage, 2020, 27: 101056.
|
20 |
韩俊伟, 肖菁, 陶莹, 等. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术,2022, 11(6): 1865-1873.
|
|
HAN J W, XIAO J, TAO Y, et al. Compact energy storage: Methodology with graphenes and the applications[J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873.
|
21 |
ZHANG W L, GUO R, SUN J, et al. Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth[J]. Journal of Colloid and Interface Science, 2019, 553: 705-712.
|
22 |
ZHOU J S, HOU L, LUAN S R, et al. Nitrogen codoped unique carbon with 0.4 nm ultra-micropores for ultrahigh areal capacitance supercapacitors[J]. Small, 2018, 14(36): 1801897.
|
23 |
YASIN A S, MOHAMED A Y, MOHAMED I M A, et al. Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization[J]. Chemical Engineering Journal, 2019, 371: 166-181.
|
24 |
YAVUZ A, KAPLAN K, BEDIR M. Metal oxides composite electrode with high areal capacitance formed by thermal oxidation of stainless steel mesh[J].Journal of Solid State Electrochemistry, 2022, 26(6/7): 1333-1347.
|